@ https://ntrs.nasa.gov/search.jsp?R=19730001973 2018-07-24T05:51:11+00:00Z

)ICS=R=T2=51,

MONis wanLO SIMULATION OF NONLINEAR RADIATION
INDUCED PLASMAS

by

Renjamin Shaw-hu Wang

DEPARTMENT OF COMPUTER SCIENCE :
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN - URBANA, ILLINOIS

(NASA~CR~1

28405) po

NO NTE Ca

Thesis 5. s PIATION TNDuCED pryapgs’ TL0N OF ¥73-10700
WL p. ang (Illinois Univ,) Bay.n.

CSCL 201

Uncla
G3/25 1625as

RN LR ik o B e O e

SR &
4

v, g ¥

5

AT
1‘-.\



MONTE CARLO SIMULATION OF NONLINEAR RADIATION

INDUCED PLASMAS

BY

BENJAMIN SHAW-hu WANG
B.S., National Taiwan University, 1960
M.S., University of Missouri (Rolla), 1964

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1972

Urbana, Illinois



MONTE CARLO STMULATION OF NONLINEAR RADIATION
INDUCED PLASMAS

Benjamin Shaw-hu Wang, Ph.D.
Department of Computer Science
University of Illinois at Urbana-Champaign, 1972

A Monte Carlo simulation model for radiation induced
plasmas with nonlinear properties due to recombination has
been developed, employing a pilecewise linearized predict-
correct iterative technique. Severalimportahtvariance
reduction techniques have been developéd and incorporated
into the model, including an antithetic variates technique
(negatively correlated variates) which has proven to be |
most useful. This approach is especially efficient for
plasma systems with inhomogeneous media, mvltidimensions,
and irregular boundaries, where other analytic or numerical
solutions are either unrealistic or impractical. This model
is quite general in scope and should be applicable to a
variety of similar particle transport and diffusion-type
plasma problems.

The Monte Carlo code developed in this work has been
applied to the determination of the electron energy dis-
tribution function and related‘parameters for a noble gas
plasma created by a-particle irradiation. The radiation
induced plasma involved was characterized by the following
features:

1) a continuous internal volume-source of high energy

elactrons

AR e



2) an applied electric field (optional)
3) secondary electron production via ionization pro-
cesses

4) losses via recombination and leakage across boundaries

The calculations were specifically carried out for a helium

gas medium with an electron source rate from 10t to 1022

(#/cm3-sec), initial electron energies from 70 to 1000 eV,
pressures from 10 to 760 tcrrs and E/P (electric field/pres-
sure) ratios from 1 to 10 V/em-torr,

For the lower source rates, it is observed that, in the
zero electric-field case, the low-energy portion of the
distribution funetion is quite close to a standard Maxwellian
distribution. However, the high-energy portion (above the
ionization potential) of the distribzwions is a rapidly
decaying parabolic-shaped tail which can be crudely repre-
sented 5y a 1/(Energy) distribution. The addition of the
electric field causes the distribution function in the low-
energy region to shift towards Smit's (or Druyvesteyn's?
distribution while the high—enérgy protion essentially
retains its zero field shape. As the source rate increases

18 -3 -1
cm -sec

beyond certain value (roughly 10 in the pre-
sent case), the low-energy region begins to depart from the
standard Maxwellian or Smit distributions and this depar-

ture can become quite large.
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A major emphasis in this development was placed on
computation efficiency. The present computation scheme
with its variance and accelerated convergence techniques
is thought to be quite efficient compared to alternate

approaches,
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CHAPTER I

INTRODUCTION

A, Statermanc of the Pronlem and Objectives

Two iajor goals were set for this study., The first was
to develow an efficient Monte Carlo simulation technique-for
solving radiation-induced plasma problems. This required
adapting several variance reduction techniques in order to

increase the Monte Carlo efficiency. The second goal was to

apply the model developed herein to study the characteristics

of a noble-gas plasma created by alpha-particle irradiation.

The major point of interest is the determination of the

electron energy distribution in the nuclear radiation induced

plasma., This distribution is of direct importance to
current experimental studies at the University of Illinois
where the possibility of direcfly pumping* gas lasers with
nuclear radiation is under study (6). Recent results from
these studies also show that nuclear radiation can be used
to enhance the output from some type of electrically pumped
lasers (5).

B. The Importance of Nuclear Radiation Produced Plasmas
and the Physical Model

Nuclea: radiation can be used in two ways: to directly

pvmp the laser, or alternately,where an electric discharge

*Pumping" of a laser is defined as the introduction of
cnexrgy inteo the lasing medium required for ropulation inver-
sion. The electrical current which creates the discharge in
the conventional gas laser is the pump in that case., Flash
lamps are usaed for many solid state lasers.

st’-“a“" . ::
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serves as the main pump, to enhance the operation of lasers.
The possibility of efficient coupling of lasers and nuclear
reactors has generated an interest in the use of high-energy
ion beams to pump lasers, To avoid radiation damage problems,
gas lasers are generally thought of in this connection,

There are several important reasons for searching for
more direct methods of coupling energy from reactor sources
into lasers (8), One is the possibility that the resulting
laser may offer unigque characteristics, e.g., new frequencies
and new methods of modulation and control. Simplified
coupling could also offer weight reductions and improved
reliability, which may be of advantage in space applications.
Also, it may eventually become feasible to simultaneously
extract several enerqgy forms, e,g., laser and electrical
power from a single nuclear station. '

In most gas lasers the excited states, and consequently
the inversion of population necessary fur laser operation,
are formed directly or indirectly by electronic collisions
in a plasma generated by an electrical discharge., However,
an alternate way to accomplish this goal is via nuclear
radiation which can produce ionization and excitation through
both direct interactions and interactions due to secondary-
electron production. Given the high neutron fluxes available
from nuclear reactors, the particles from neutron-induced
nuclear reactions (e.g., a-particles from a Boron coating on

the wall of a laser tube) can furnish the nuclear radiation
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source, The description of the transport of both the primary
radiation and the secondary electrons, from their point of
birth throughout their path in the gas, is a key problem in
the guantitative evaluation of the plasma. Therefore the
development of nuclear..radiation pumping requires a thorough
understanding of the radiation-irduced plasma.

The following physical model is applied to the situation
of a radiation-induced plasma. Pertinent gquantities of
interest include: electron -energy distribution spectrum;
average electron energy: and rate of energy loss.

The heavy-charged particles (a-particles)are bdrn in
coating and enter an adjacent gas. In the present calcula-
tions, the cylindrical geometry cof the actual laser tube
is approximated by a slab genmetry (cf. Figure 1} with two
parallel plane boron coatings separated by a gaseous medium.
The a-particle radiation continuously creates high energy
electrons throughout the gas volume (with energy EO). The
resulting plasma is a weakly ionized, three-component plasma
(elecctrons, positive ions, and neutral gas atoms). It is
assumed that the alpha-particle trajectory can be treated
analytically using methods such as developed in (7).
Furthex, this reference shows how to obtain the primary
secondary-electron (d-ray) energy spectrum. The difficult
problem, however, is to follow the thermalization and

further secondary production of these primary electrons.



Thus, the Monte Carlo simulation starts off by following
these electrons on their life time histories, i.e., by
simulating the course of their thermalization. Electrons
go through various processes of collisions and scattering,
resulting in a complex process of diffusion, energy degrada-
tion and secondary production, but finally,they recombine
with positive ions or escape from the system,ending their
histories,

With the radiation rates of interest here, the plasma
is only weakly ionized and electrons mostly thermalize by
collisions with the neutral backgfound-gas atoms. In other
words, collisions with ions and other free,electrons can
be neglected. In this sense, the problem is simplified in
that it remains linear. However, some non-linearity enters
in the following way. The recombination process depends
on the ion density and spatial distribution. However, the
ions are originally formed by ionizations which occur as the
electrons slow down.

Another important characteristic is that the plasma is
highly non-equilibrium. The thermalized electrons and ions

form an approximately Maxwellian background, but superimposed

; .

on this is the high energy tail due to the electrons in the

¢

process of slowing. Also, the alpha particles themselves E

represent a non-equilibrium component. %
In summary, the special features of the plasma system

B
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1) Continuous internal volume source.

2) An applied electric field may or may not be present.

3) Finite cylindrical geometry-~approximated here by
slab geometry,.

4) Elertron~ion pair production and recombination
processes.

5) The energy range of the electrons range from
kilovolts to thermal (eV.).

6) The system represents a non-equilibrium plasma
but in a steady-state condition {or stationarys.

7) Due to relatively small densjit.2s c¢f electrons and
ions compared with that of gas atoms, direct
interactions between the electrons themselves or
electron-ion collisions are neglected.

C. General Approaches and Methods cf Solution

Possible approaches toward solutions of these types of
problems {particle transport and diffusion) can be cate-~
gorizad as follows:

1) Analytical solution of the governing Boltzmann
transport equation.

2) Numerical solution of the Boltzmann transport
equation.

3) Direct analog simulation (Monte Carlo). ' .

4} Mixtures c¢f the above approaches,

The governing equation for this type of probiem is the
Boltzmann equation, and most classical methods have involved
approximate analytic solutions of it, Solutions are possible
only after various approximations and simplifications are
made, and such solutions are often very restrictive and/or

difficult to extend to actual situations of interest, More
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or less the same drawbacks apply to numerical solutions,
However, in this case approximations are necessary or the
computation time becomes too long, especially as the
dimensionality and the complexity of the problem increases,
In fact, the computation time increases roughly exponentially
with the dimensionality of the problem., Usually the govern-
ing partial diffezential and integral equations (coupled
Boltzmann eqguations) are reducz2d to finite difference
equations, and tie requirements for stability and convergence
severely linit the maximum step sizes of the independent
variables. Further difficulties with the practical applica-
tion of such approaches arise because it is often difficult
to include realistic boundary conditdons.

Direct simulation by the application of Monte Carlo
techniques seems to be the better approach; sometimes the
only approcach for such problems. It by-passes the direct
solution of the partial differential-integral egquation, and
generally no approximations and/or simplifications are
ilecessary. Complicated boundary conditions can be handled
easily. and the computation time increases at the most
linearly with the dimensionality of the problem, However,
computer time still may be a problem so that judicious
selection of numerical schemes and variance reduction
techniques are required,

Many methods have been devised in the past which involve

a mixture of analytic, numerical, and Monte Carlo approaches.
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In such situations, Monte Carlo is usually applied to the

most difficult part of the problem. For instance, in the
evaluation of the non-linear, five-dimensional collicion
integral in the Boltzmann equation, straight forward
numerical quadrature would require months of computation
time cven on the present day fast computers. The Monte Carlo
(statistical sampling techniques which closely resemble the
actual collision phenomena) technigques can produce results
within reasonable computation time (24). The Monte Carlo
method may be defined as a numerical device (numerical
experimentation) for studying an artificial stochastic

model of a physical or mathematical process. This study

may be approached by one of two methods. The first is the
process of simulation (direct analog simulation) in which
the particles -~ electrons and ions in the case of plasma
systems, or photons in the case of radiative transfer - are
represented by a game of chance in the computer. 1In the
second method, which is non-simulation, the Monte Carlo
technique is strictly used as a numerical stochastic device
for the solution of a given integral or partial differential

equations (24,25),



CHAPTER II
THE MATHEMATICAL MODEL: NUMERICAL SCHEME AND

PHYSICAL PROBLEM

A. General Description of the Physics of the Problem

The plasma under study is a weakly-ionized three-
component plasma, and is non-equilibrium as aescribed in
Chapter I. The o-particle radiation continuously creates
high-energy electrons throughout the gas volume. The Monte
Carlo simulation is to trace these electrons' life histories
and their complex processes of diffusion and energy degrada-
tion. Since the. diffusion process of the electrons through
the medium is affected by the density of the positive ions
and the other electrons present (background electrons), the

resulting problem is non-linear.

1. Physical Processes Involved

The mechanisms by which particles interact with the
atoms of the medium are elastic and inelastic collisions,
by which the incident particle is slowed and dissipates some
or all of its kinctic energy to the medium by the combined
action of the above mentioned processes. The particle can
also experience so called superelastic‘collision by which the
particle collides with the excited atoms gaining some energy.
Finally, the particle can collide and recombine with positive

ions or can leak out of the system thus endiﬁg its life



history.

As described in Chapter I, the type of interaction
which is involved in any particular collisicn is governed
by the laws of chance. For large numbers of interactions,
the frequency of occurrence of any given interaction is
determined by the relative magnitudes of the interaction
cross sections., Secondary knock-on electrons due to the
ionization process may be capable of further interacting
with the atoms and producing additional secondary electrons.

As the system reaches steady-state, a balance is
reached such that the birth rate for new particles, i.e.,
the rate at which primary or source electrons enter the
system plus the production rate of secondary electrons due
to ionization should approximately equal the loss rate due
to leakage and absorption or recombination.

Since the transport of radiation through a medium

affects its absorption properties, the transport of individual

particles is indirectly affected by the density of the
other particles present, and this introduces some non-
linearities into the system. We shall adopt a piecewise
predict-correct technique to approximate the nonlinear‘
system with a linear model.

We are concerned with the simulation, by random
sampling of the scattering of the charged particles. The
direct simulation of the physical scattering processes in

such a way that the diffusion process is imitated by letting

s
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the particles carry out a random walk, each step of which
takes into account the combined effect of many collisions.
The mechanisms by which electrons interact with the atoms of
the medium are elastic, inelastic, and superelastic colli-
sions as well as recombinatién with positive ions, The incident
source electron is slowed and dissipates some or all of its
energy to the medium by the combined.action of the various
scattering processes, until it escapes, or recombines with
an ion (radiative energy losses are neglected). The
probability that an interaction occurs is determined by the
total collision cross-section. The type of interaction is
then determined by the relative magnitudes of the individual

cross-sections,

2. Relation to tﬁe Transport Ejuation

Although nc¢ direct use will be made of the governing
Boltzmann transport equation in the éequel, we shall write
it down briefly, in order to indicate the mathematical
problems to be solved implicitly by the Monte Carlo method,

It is a nonlinear integro-differential equation of the form

i~ '

)

( (1)

g2lg

- - _—a—g
+ u x B} . sz ‘_(at) collisions

wheie f: number density distribution function

B: magnetic field
u: velocity of the particles
T: electiic field strength
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t: time

r: spatial variable
Tn our situation B=0 since the magnetic field does not exist.
Further, if we assume an infinite medium and uniform source,
v}f=0, the distribution function £ depends only on energy.

Then the above equation reduces to

3£ _
a2t

=10

= of
E . p,f = (5E) collisions (2)

The right hand side term ié the collision term, which is the
most difficult part of the equation. The effects of all |
relevant particle interactions must be included in this
term, For the case of electron c¢ollisions with stationary

gas atoms of unifoxm density, we can write the collision

term as:
dN, -dN
2f) oo = (Dot (3)
Jt’ collision dv.dt

where dNin gives the number of phase space points (electrons)
that are scattered into the phase-space volume dV by

A represents the number

collision in time dt. Similarly, dN ...

of poinis scattered out of 4V Sy collisions in time dt. This
Eg. 2 states that the change in the distribution function £
are caused by collisions of various kinds and the external
force due to the electric field.

The assumptions that enter into the derivation of the

transport equation which carry over to the Monte Carlo
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simulation include:

a) the scattering centers (background atoms and ions)
are distributed at random, i.e., possible correlations
between the positions of various atoms and ions are not
taken into account. |

b) 1In the absence of an electric field, the trajectory
of the particle is idealized as a éig—zag path, consisting
of flights interrupted by sudden collisions in which the
energy and direction of the particle changed. The quantum-
mechamical interference (electron diffration) resulting
from the coherent scattering by several centefs are neglected,
and a particle, in the course of traversing the medium,
interacts with one scattering center at a time.

The diffusion process in terms of the transport equa-
tion is analogous to the use of Eulepian coordinates in
hydrodynamics, in that one asks about the flux at given
points in space. By contrast, the Monte Carlo method uses
Lagrangian coordinates; one attaches a label to a particular
.bit of fluid, i.e., a diffusing particle, and follows its
history. Then, by sampling many histories, one is able, at

least in principle, to solve any diffusion problem.

B, The Stochastic Model -~ Numerical Scheme

The essential approach to the nonlinear problem adopted
here is the use of piecewise linearized steps. In each

such step (an amount of time At along the time axis), the
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dominate parameters, which characterize the nonlinear
properties, are predicted and considered to be fixed with
respect to the independent variables. During the time At,
the system can be considered as more or less linear, so the
conventional Monte Carlo simulation technique is used.

The gquantities pertaining to the given system are computed
for each of a reasonably large number of independent
particle histories, The desired parameter values are
obtained by averaging the results over all of the histories.
At the end of the step, the dominate parameters are
corrected before beginning the next step. 1In each step
(time interval pt, or cycle), instead of computing the
trajectory and angular deflection of an electron after each
interaction, we perform a random walk calculation., Since
eaéh step of the random walk takes into account the combined
effects of many individual interactions, we form a so-~called
condensed history by this approach, Let us describe the

model in some detail, step by step.

1. The Geometry and the Coordinate System

The initial spatial geometry in this problem.is a one-
dimensional, finite slab (from 2z=0 to z=D) which is sub-
divided into uniform intervals called zones as shown in
Figure 1., The energy range is from 0 to E, (=1keV) which
is also subdivided into three regions: 0 ~ 1 (thermal

Each of these

energy region), 1 to ED2, and ED2 to Eg.
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regions is further divided into smaller uniform or logar-
ithmic spacing (intervals). The particle number density
distribution £(E,z) is a function of energy E and spatial
position 2 and is generated such that particles with

enelgy and spatial position falling into the same intervals
are grouped together and normalized by the total particles
processed. Although the system is stationary, we deliber-
ately introduce the time variable for the convenience of
recording output information and carrying out the calcula-
tion steps. The time serves as a clock, or we can imagine
that the system begins in a transient state., Then, aé time
gocs on it will eventually reach steady state. The storage
of the timing information for individual particles is not
necessary. Instcad of following a single particle from the
beginning to the end of its history, we follow a large
number of particles, say N (which represent the sample
particles of the whole siystem population) through a small
time interval At (called the cycle time). Within this

time interval, the system is considered to be linear, and
the particles arc processed more or less independently as
in a conventional linear Monte Carlo model, At the end of
At, called census time, we record data information for each
particle (rccord particle state iﬁformation). During this
time interval (or present time cycle) some particles may
experience collisions of some kind, some may not, and new

pavticles (source particles, secondary particles produced
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by ionization) enﬁer the system. Some particles may be
absorbed or escape from the systems their histories are
therefore ended. This represents a random walk calculation,
and each step of the random walk takes into account the
combined effect of many individual interactions. The
trajectory of a particle which is computed by this approach
is called a condensed history., The residue particles
(ionization produced secondary particles) are also set

into motion, and their histories are followed separately.
They are like all the other source particles in all respects.
The complete description of parti¢le histories is approxi-
mated by the condensed histories, or we take sequences of
snapshots of all the particles in the system at various
times to provide a moving picture of the history that can
be used to estimate the quantities of interest. The path
lengths travelled by the particles are also used as a clock
to measure time, or equivalently, the variable t may be
replaced by S(t) = j: v(x)dx. The trajectories of the
particles (the conden:ed histories) are described by the
arrays as indicated in Figured 2. The superscript denotes
the cycle time number; the subscript denotes particle
number where the index 0 refers to the initial state of

the particle, Other notation includes E: the particle
energy, z: spatial position, and U: the direction, and
wt: the weight. When the particle has traveled a path-

length DCEN (in the same duration At), a condensed history
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is sampled. Letting the particle carry out a random walk
in each step (from state M to state M+«l) takes into account
the combin¢'l effect of many collisions, The sizes of the
steps of the random walk, i.e., the pathlength intervals
DCEN (equivalent to At) are chosen such that the total
number of steps should be kept as small as possible, Too
large a step size (At) may cause inaccuracies in the
approximation. However, the length of the Monte Carlo
calculation is directly proportional to the total number

of steps. Thus, a compromise must be reached such that we’
choose as big a step size as possible without introducing
intolerable inaccuracies., A reasonable initial value is
chosen such that the particle with the average energy of
the time cycle travels one mean free path, i.e., At=D__ _/V .

avg’ "avg

Different time cycles have different E_ (Vévg) and D___ S0

vyg g

At may vary, but as steady-state is approached, At will
not change much. By this technique we not only randomize
and average the different particle samples, ensemblewise,
but we also do the same (on the particle ensemble sets)
along the time axis (averaging independent but equivalent
time cycles). Trial and errcor results indicate that the
optimum values of At (or DCEN) lie between 0.5 (Davg/vavg)

2.0 (Davg/vavg)'
The maximum number of particles (N) that can be
processed in each cycle is limited by the amount of storage

available in the computer syztem., For the IBM 360/75 system
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at the Illinois Computer Center, the storage of the data
for 5,000 particles i1s easily accomplished. By playing
Russian roulette, splitting, or similar techniques, the
total number of artificial particles (N) can be increased
by an order of magnitude, The end of one time cycle ti is
the start of the next time cycle ti+l‘ While keeping track
of the particles in a current time cycle at cne time, we
simultaneously record the data information after each
particle reaches the census and extract the output para-
meter values after all the particles have been processed, .
In this way the storare requirements are reduced to a minimum
level possgible,

The limitation on N by the storage regquirement may be
further relaxed by the following technique. Instead of
recording and tallying the cutput information and clearing
or reinitializing all parameter values at the end of every
cycle, we record the accumulated information for K contin-
uous, and similar but statistically independent time cycies,
then renormalize and reinitialize. In this way the total
nunber of particles processed is KN, and if processing of
a large number of particles is desired we can use a larger
value of K(K>1) at the expense of more-processing time. The
reason £for this is based on the fact that the system being
simulated is time independent. We have introduced the
time variable artificially so that ergedicity holds, namely

ensemble averaging is the same as time averaging.
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2. Tracing Procedure

The siwulation is initialized by introducing N particles
with energy Ein [sampled from an initial guess for the
number density distribution vs, energy], with spatial
position zg (uniformally distributed throughout the spatial
region), with direction ug (u=cosf; 6: angle of flight with
z axis) which is uniformly distributed between -1 and 41
and with weight wtg. Volume particles are emitted uniformly

throughout the medium and isotropically in direction: namely,

at t=to:
0
E{ = %n | (4a).
0 .
2, = r D {4b)
uo = 2r,-] (4c)
od i

where r,: random number, uniformly distributed between O,
1, or 1, ¢ {0, 1)
d: slab width or cylinder diameter
wti,Ein: weight and particle énergy determined from
initial distribution.
Once the particle data are determined, the geometry
routine is entered. This includés the determination of the

distance to boundary dg, the distance to collision & and

Tol’
the distance to census time 4 . (clock distance equivalent

to At). These distances are defined by:
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cen

where r:

Davg

DI:

The next

smallest,

a.
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[(§+1)AZ -« Z]/u if u > 0 (5)
(2 - FAZ)Y/ Inj iFu<o

DLB (a large number DLB >> AZ) if u== 0

]

A (E) ,lnr’ = llnr[ / E;(E] (6)

= L] — - - . ' 1
= Davg DI = vavg At < DI (7}

random number uniformly distributed
zone number
spatial interval size

the total cross-section evaluated at the particles!
energy

the average value of D of N particles of the

col
previous cycle., It is approximately one mean
free path corresponding to Eav : the average
energy of the cycle. g

input parameter for controlling the cycle time
interval. :

step depends on which of these distances is the

The System Without Electric Field (Effg)

i)

is advanc

If the smallest distance is d

cen the particle

ed in position and time to census time,

z + u.d,_. (aa)
u (8b)
E : (8c)

The particle data is stored, the energy is tallied, and
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the density counter is incremented. Then we go on to
process the next particle.
ii) If the smallest distance is dy, the particle is

advanced to the boundary such that:

Z' = 2 4 (dB + 0.001¢AZ) . u {%2a)
= INT {z'/Az) + 1 ‘ | (9%)
d: = d - d (od)

cen cen B

where j is the zone number. If j>JZ or j<l1, then the
particle is considered lost or has escaped from the system,
and its history is ended., Otherwise the calculation and
selection is repeated until the particle reaches the census
time,

is the smallest, the particle is first

iii) If dcOl

advanced to collision point and

] = »
Z Z 4 U dcol

cen cen col : {10)

Then the type of collision is specified. For specifying
the collisional processes, we divide the whole energy range 5
into two regions, Region I: energy range 0 to EDl eV,
Region II: energy range EDl eV to E0 eV, Edl and Eo are | !A
specified by input parameters and are referred to as the

energy dividing line and source particle energy, respectively.
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If the particle's energy is in the range of Region I,
three kinds of collisions are possible: elastic collisions,
electron-ion recombination, and superelastic collisions
(where electrons hitting an excited atom pick-up the
excitation energy), If the particle's energy falls in
Region II, it can experience four kinds of collisions;
namely, elastic collisions and three types of inelastic
collisions--excitation to metastable level, excitation to
other levels, and ionization. For ionization, the secondary
electron so froduced shares energy with the primary electron,
and the energy of primary electron before collision less
the i ization potential is shared between the two electrons.
The partition of the shared energy could be determined
according to Goodrich's experimental distribution curve (31).
But based upon Thomas' (1) calculation experience, the way
in which the energy is partitioned does not have a strong
influence on any of the calculated mean properties. Thus,
for computational simplicity, as Thomas did in all his:
calculations, we choose the partition ratio 9:1. The
secondary electrons produced via ionization are considered
as new particles introduced into the system. Thus they are
followed from their point of birth just like other particles,
This is equivalent to the‘generation method for processing
branched trees of samples.

The type of collision is determined according to

Figure 3 using a random number (uniformly distributed
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between 0 and 1) to play the law of chances.

b, With Electric Field Present

The coordinate axis z is defined as antiparallel to

f
E;, the state of motion of an electron is specified by its

the electric field E_. In the. presence of electric field

speed V and the direction cosine cos 8, where & is the
angle made by the line of flight with the z.axis at the
time t. If an electron is in a sﬁate,[E(v), u({coss), 2, t],
it will assume (after a flight along the orbit by At) the
new state [E'(V'), u'{cosf8'), z4+Az, t+At]. These para-

meters are connected by the following relations:

Vt.sinft = V.sinh . . , (11)
mVicosf! = mVcosB + eEg-At (12)
172 12 = 172 mv? 4 eE.pz _ (13)
E' = E 4 eE..Az (14)

where m and ~e are the mass and the electric charge of the
electron, respectively. Here Az is the projection of the

path length I on the z axis. It can be obtained as follows;

AZ At - Ef '
hz =J V. dt = j (Veu 4+ — At) 4t
o “ 0 m

Be 2
= VeriepAt + 1/2-'5-- At : (_15)
In carrying out the geometry routine, it is suitable to
use time directly as the clock. The determination of the

distance to collision dcol(DCOL) and the distance to census

. ;o
R W Ty SRC T I
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DCOL
DCEN

v
Yy

Vv
Z

where E:

B

a en(DCEN) is accomplished as follows:

= A-llnrl
= 2/(1/ \;) + Y NE)!

1}
<
+
<
-
ot

= V.s5inf

g
= V.cosf + m At

the initial energy of the particle

26

(16)
(17)

(18)
(19)

(20)

' the energy of the particle after. flight time At.

The next step is to determine which of the distances

is smaller. If DCEN<DCOL, then the particle is advanced

to the new state

Et =

z|

ul

i

E 4 EchZ
z2 + Az
NE/E - u + eE - At

(21)

If E'<0 or z'>D, z'<0 then the particle is considered to

have escaped from the system.

is advanced to collision point,

At' = At -~ DCOL.jAt/DCEN

DCEN
Zt =

Et =

then the specific collision type must be determined.

= DCEN - DCOL
7 + Az.DCOL/DCEN

E + Az.E_.DCOL/DCEN

£

If DCEN > DCOL, the particle

(22)
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c. Types of Collisions and Cross Sections

For the elastic collisions, the particle scatters off
with angle of deflection 8 and energy loss AE, the follow-

ing formula is used (36}.
2m .
AE = . (E-En) (lncoses) (23)

where Bs: scattering angle (angle of deflection)
E: particle energy
E_: target gas atom energy
m: electron mass
M: gas atom mass
E  is selected according to a Maxwellian distribution, and
the AE so formed may have either positive or negative
values, indicating the loss or gain of energy respectively.
For calculational simplicity, instead of selecting the
deflection from the elaborate distributions,.we use T/4
or /2 deflection approximations, namely es= T/4 or W2,
then coses = 0 or 0.70711. Another reasonable alternative
is to assume that the direction after collision is equélly
probably in all directions (isotropic scattering). We
select this direction at random with unifcrm distributior,
and based on Eq. 23 calculate coses and AE, respectively,
where ‘
cosd = 2r -1 ' (24)

BS = 8 -,-ei
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where ai: incident angle |
8: outgoing angle after collision
For the three kinds of inelastic collision cross sections
we use approximate formula based on experimental data as
correlated by Itoh and Musha (2)., ' The formulas are expreséed

in the form:

+ C | (25)

where the constants A, B, C, and E, depend on the kind of
collision and scattering angle. For the elastic cross |
section in helium, we use a single approximafe formula for
whole effective energy range based on Heylen and Lewis's

paper (10), namely:

Fo1(E) = 26exp(-0.04E) (em™) (26)

L}

For the recombination cross section for helium (35}, we

assume the simple form:

S rep(B) = p(E).wt
M(E) = 1072 /v(E) (27)

where N¥: 'ion density
V: electron velocity

the superelastic cross section is

+
Zs L(B) = 0.109(19.8~E) - g (28)
e 0.25 + (E-19.8) *On
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where N*: positive ion density
Dn: gas atom density
E: electron's energy
3. The Prediction and Correction of Dominant System
Parameters
There exists a single parameter, the ion density
distribution N*(E,z), which completely characterizes the
nonlinearity of the system, This simplifies the problem
and suyggests the following predict-and-correct scheme.
We assume that the average mean free path (or At) and the-
ion density distribution N*(E,z) in the present time cycle
also applies to the next time cycle, In other words, in
each time cycle we use the predicted values of At and
N*t(E,z) from previous time cycle, At the end of present
time cycle, we use the up to date information to renormalize
and correct the value to be used for the next time cycle.
As steady state is reached, the predicted and corrected
values of the parameters converge. From the continuity
equation

J:J=85-L (29)

where J: the particle current flow in or out of the system
S: the source
IL.: the sum of losses

To start with, we assume that V*J = 0, so that

S = L = a(8) N*(E,z) N"(E,2) (30)
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Here N (E,z) is the electron number density, the key
quantity we are calculating. To ihitialize the run we have
to predict N+(E,z). It is reasonable to initially assume
this distribution is uniform in 2, and a maxwellian dis-
tribution in E, i.e., N¥(E,z) = NM(E). We also assume

that N"(E,z) is the same as N*(E,z). Then we obtain

8 =L = a(BE) N*(E,z) N (E, z)
= a(E) [N*(E,z)]2 (31)
or 8 b(E-Fy) = a(E) N2 M (E)

Integration of both sides gives

Eqy
Sq = N2 jo o(E) MZ(E) 4E
(32)

. B
. LNy = Eso/j O () M2(E) ar)l/?
0

This gives a starting value for the calculations, In later
cycles the renormalizatios process involves integration of

Eq. 29, with V.J # 0, i.e.,

Jiiﬁﬂéggél dzdE = q{[S(E'Z)dZdE

- J[!GIE) N*(E,2) N"(E,z)dzdE - Jesc * Y

which reduces to

5

J(%Z=d) - J(2=0) = & 4d -J[ra(E) N*(E,2z) N"(E,z)dzdE
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2 §qd + 0 = [J(2=d) -J(2=0}] -7,

N% =
JJotE) M(E) n7(E,z) dzdE (33)

where i refers to ith time cycle
Jesc: current due to escaped electreons

J_: current due to secondary electrons produced
by ionizations

M(E): Maxwellian distribution (normalized)

n (E): electron number density distribution
(normalized)

SO: source rate

N.: ion density distribution (normalized)
The value of Ni replaces NO in equation (33) at later
time cycles. The value of N, (N*) enters the formula for
the recombination c¢ross section and superelastic cross
section, thus it directly affects the rates of recombination.
and superelastic collision, Indirectly, it affects the
balance of the system, or equivalently the rate of conver-
gence of the Monte Carlo calculation. An adaptive correc-
tion procedure is used here. It is based on the value of
the "balance factor" BF, defined as the ratio of the
particles introduced into the gystem by source and ioniza-
tion processes to the particles removed from the system due
to recombination and leakage. We adopt a over-relaxation
type of correction technique, the over-correction is uséd
to speed up the over-all convergence rate., As defined

before, if BF > 1, the system has more particles introduced
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into than eliminated, but if BF < 1, the opposite is true,
The over-correction factor is proportional to (BF)k, i.e.,
to the kth power of the balance factor. The value of k
initially chosen was k=2, but an optimum value can be

obtained by trial and error,

P b b
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CHAPTER III

VARIANCE REDUCTION TECHNIQUES

A. General Background

The Monte Carlo method {or method of statistical
trials) consists of solving various problems of computational
mathematics by the construction of some random process for
each such problem, with the parameters of the process set
egual to the required quantities of the problem. These
gquantities are then approximated by observations of the
random process and the computation of its statistical
characteristics, which are approximately equal to regquired
parameters [from Schreider {15)]., Every Monte Carlo
computation that leads to quantitative results may be
regarded as estimating the value of a multiple integral.
Suppose we have M random numbers in the computation system.

)

The results will be a vector valued function R(§;,£,, ... ¢y
involving the sequence of random numbers &l, 52, e Ene

1 1
0 LI I OR(xl’xz’ s s xm)
... dxy. For the sake of simplicity, we take the one-

This is an unbiased estimator of‘f
dxl

dimensional integral as a standard example., Let

1

8 =‘f fx)ax (34)
0
2 1 2
where £ ¢ L“ (0,1) or uf [f(x)]“dx exists.
0

Define the relative efficlency of two Monte Carlo methods
as follows. Let the methods call for nl and n, units of

computing time, respectively, and let the resulting
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estimates of 8 have variances aiz and 652. Then the

efficiency of method 2 relative to method 1 is defined as

2
ny 0
n., -0’2i (35)

Equation 35 is the product of two terms, the variance ratio
2 2 N ¢ :

¢1°/ 63" and the labor ratio "1l/n,. If 71, ‘}2, cer Iy

are independent random numbers with uniform distribution

between 0, 1 or %, €(0,1); then the quantities £,=£(7,)

are the independent random variates with expectation 8.

Therefore

N - '
T=% % £ (36)

i=l T

=4 I

is an unbiased estimator of 8, and its variance is

1 62 '
b} 2
0

Accordingly the quantity ¥, which has been determined by
observation of the random process, is approximately equal
to the required quantitj 8 (or in other words, it is =2n,
unbiased estimissir of 8) with .a probability which can be
made as close as reqguired to unity if a large number of
trials is practical. We refer to the estimator T as the
crude Monte Carlo estimator of 8 (commonly referred to as
Monte Carle estimation)}.

Let us introduce another even less efficient method,

namely hit or miss Monte Carlo. Suppose that 0 < f{x) <1
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! when 0 < x < 1, We may draw the curve y = £(x) in the unit
square 0 < x, y <1, and 8 is the proportion of the area
of the square beneath the curve., Stating this formally,

we write
1 .
f{x) = .J g(x,y)dy (38)
0 _

where gix,y) = 0 if £(x) < ¥y

i s e e R Tt
FENEY P LA SR - SN

.f Then

i 1l 1
i A = J f gl{x,y) dxdy (39)
’ 0 0

ﬁ The estimator

g 1=

- 1 n¥

i=1

]

n* is the number of occasions where f£( §2i-1) 2 €04
In other words, we take n trials at random in the unit
square, and count the proportion of them which lie below
the curve y = f£(x).

Historically, a hit or miss method was first propounded
% in the explanation of Monte Carlo techniques. It is the
easiest to understand but one of the least efficient
techniques. The rate of convergence and the variance
1 (statistical error) is in general proportional to lﬂﬁﬁ
: where N is the number of samples. It is obviously imprac-

tical to gain a significant improvement of accuracy by

merely increasing N, Therefore more efficient techniques

for reducing the variance and/or increasing the efficiency
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are very important. Monte Carlo experimentalists need
wide experience and background in both the mathematics and
the physics of the problem, and they have to exercise
considerable ingenuity in distorting and modifying problems
in the pursuit of variance reduction techniques., Statistical
and inferential procedures are also important in order to
extract the most reliable conclusions from the observational
data.

The basic requirement of the Monte Carlo calculations
is to establish how random numbers may be used to sample
a function that desc;ibes, in a probabilistic fashion, a
physical event. The procedure by which this is done
follows from the fundamental principle of Monte Carlé (16),
vhich may be stated as follows, If p(x)dx is the probability
of x lying betweer x and x4dx, with a < x <£b

b
J pi{x)dx = 1 (41)
a

X
Then r = P(x) = 5 p{x)dy (42}
a .

determineé X uniquely as a function of the random number i
which is ﬁniformly distributed on range (0, 1)}. The quan-
tities p(x), P(x) are the probability density and the
probability distribution functions, respectively.

With the development of large computers, the use of

the Monte Carlo method in a wide range of problems has
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increased rapidly. In particular, the method is applied to
varicus physical problems such as plasmas (15), radiative
transfer problems (21}, neutron transport and nuclear
reacter physics (29), etc.

The random walk type simulation can be briefly described
in the following manner. One first introduces the basic ‘
physics of the prohlem into the computer in a probabilistic
fashion, A system of coordinates and boundaries are defined
and then, as a computer experiment, particles are released
from the source. These particles are traced as they diffuse
through a prescribed medium following the probabilistic
interaction laws, The particles are followed until they
escape from the medium or are absorbed or are converted to
the thermal field.

The parameters pertinent to the evaluation of the
desired quantities are recorded. One continues processing
additional particles until adequate statistical estimates
of the gquantities of interest have been obtained.

When doing a Monte Carlo problem one focusses attention
on three main topics. They are:

1. The development of the analogy for the probability
processes (simulation).

2. The generation of sample values of the random variables
on a given computing machine,

3. The design and use of variance reduction techniques.
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The variance reduction methods are often strongly
dependent on the piobabilistic model, thus the greatest
gains are often made by exploitiné specific details of the
problem, rather than by routine application of general

principles,

B, Tmportance Sampling

The general idea of importance sampling is to draw
samples from a distribution other than the one suggested
by the problem. Then an appropriate weighting factor is
introduced to correct the biasing caused by changing the
original distribution. If done correétly.the £inal results
are essentially unbiased. The object is to concentrate the
distribution of sample points in the parts of the region
that are most "important" instead of spreadi?g them out
evenly. Thus, the probability of sampling from an interest-
ing region is increased; the probability of sampling from
unimportant or less interesting region is correspondingly

decreased. Stating this formally, we have

1 1 1
_ _ £{x) _ [E£(x)
8 = jof(x)dx = XQ G163 g(x)dx = Jm acG(x) (43)

(¢
for any functions g and G satisfying

X
6(x) = | glyyay (44)
JO

where g must be a positive valued function .such that
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1
(1) = jg(y)dy (45)
0

if 7 is a random number sampled from the distribution G,

then f(?)/g(7) has the expectation A and variance

1(f(x)

2 2 |
df/g = 0 ETET - 6)° dac(x) (46)

We notice that if g(x) = cf(x), or if g is proportional to

. 1 2
f and if ¢ = T then G‘f/g

not exist, since we do not know 6. We always obtain an

= 0, This perfect situation does

unbiased estimate for positive function g, Our object is
to select ¢g to reduce the standard error of 6ur estimate.
Because the estimate is the average of observed values
of £/g, we choose g such that f/g is as constant as possible
in order to achieve a small sampling variance, While we
intend g to mimic £, we generally restrict our choice of g
to functions simple enough to allow analytic integration.
For the present plasma problem, the importance sampling
technique is developed as follows: during the particle's
(electron's) random walk, it suffers a large number of
collisions with gas atoms, and these collisions may be -
elastic or inelastic or of other kinds, The probabilities
of thelr occurrence depend on their Cross section zi' We

have

5= 54 e ... 2 (47)

t M
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where Zi: the cross section for ith process
Zt: total cross section or the summations of the
cross sections of all the possible processes

that the particle may experience,

Dividing both sides of equation 47 by Z£,, we obtain:

where Ei = Zi/ 3 the probability of ith process occurring
t
as the particle experiences a collision, If we introduce

weights Wy into equation 47 we obtain

Zt.‘?-wlvzl + Wzﬂzz d s e . WM.ZM (49)"

Similarly we have

After the application of the weights, we put more weights

on the interesting or more important events. Then their
artificial probabilities are greater, therefore we can get
better estimates of the important parameters. Coincidently,
such a linear weighting scheme can only be applied to the
elastic collision process in our system. The other colli-
sion processes involve appreciable changes in the particle's
energy {(catastrophic collision). Also cross sections are
energy dependent, these nonlinear effects prevent the
application of above mentioned weighting scheme to inelastic
collision processes. By looking at the cross section values,

in the low energy region, the elastic cross.section is by
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far the largest by order of magnitude., Others have shown
that the elastic process does not strongly influence the
estimated parameters that we are interested in (1, 2).

As an electron makes an elastic collision, it loses only a
small amount of energy while making a small angle deflec-
tion. In fact, most other workers simply neglect elastic
loses if an electric field is present (1, 2; 10). 1In our

case, with E_=0, elastic effects must be included. In the

£
low energy region (= 0 eV to 20 eV), the energyof amajority
of the particles 1iés below 1 eV and over 90% collisions
are elastic collisions, and only a few collisions are
inelastic,

The collision process subroutines are a time-consuming
part of the simulation calculations. If we can supress:
the elastic processes by a factor of Koy the chances of
all other processes are increased by approximately the same
factor, Therefore we convert more computing time to
processes wh;ch contribute more-strongly to the quantities
of interest. The following formulation provides the
theoretical support for this, . In lieu of equations 47-50,
the p, are the original probabilities (undistorted proﬁa-
bilities) while the p} are the weighted prqbabilitie55

Then the correction factors are intrcduced as follows: .at

energy E, we have

¢, =P1/py, ¢, = Pa/py o . . ¢y = Pr/py (51)
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31 »5t 3t 1
or C, = pi/p' = ] — (51a)
1 e 23V 2e My
1
If we let Wy = g—— , W, =Wy =, . . Wy=1
el
then from (51) we have _
S L2 S N WP 1 S (52)
1 2y 230V Sg W i Sy ' i#)
let El n Zel namely we introduce weight on elastic cross

section only. Since 3 _,(E) >» Z . (E), 1 >1, ¥, then

~—'-r}§-7- = TTE) Wy = -}-cé— (535

Zt . 2e.‘l. el

and Cl':'. Wy -‘%— =1, Ci"-‘: 'El_ (i;él) (53a)
1 ’ el

Equation 53 holds for low energy region, which is approxi-

mately independent of energy.

C. Russian Roulette and Splitting

In general, the sampling is done such that we examine
the sample and classify it as being in some sense "inter-
esting" or "uninteresting"., We are willing to spend more
than average amount of work on the interesting samples and
on the contrary, we want to spend less effort on the
uninteresting ones. This can be done by splitting the
interesting samples into independent branches, thus
resulting in more of them, and by killing off some of the
uninteresting ones. The first process is splitting and the

second Russian Roulette.
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The vkilling off" is done by a supplementary game of
chance. If this game isblost, the sample is killed:; if it
is won, the sample is counted with an extra weight to make
up for the fact that some other samples have been "killed",
The game has a certain similarity to the Russian game of
chance played with reveclvers - whence the name,

For the present plasma system we divide the whole
energy spectrum into two regions, the low energy region I
(0 eV to ED1l eV) and the high energy region IXI (EDl to EO)'
Here E_. is energy of source particles, which is the highest

0
energy the particie can have. EDl is the energy region

dividing line, which can be chosen as any valuebetween 5 eV and
100.eV depending on the’initial guessed energy distribution.

In region I, the number density is high, and the elastic
process is the dominant process. As we mentioned earlier,

.Q% the elastic process does not contribute much, so Region I

;iﬁ ifs classified as uninteresting. Each particle in this

. region (particles with energy less than Ebl) is assigned a
weight k1(kl » 1), In other words, each particle plays

the role of kl particles. .

In region II, classified as interesting region, each

particle carries a weight w, (w, = 1/kz, W, £ 1). Namely,
each particle in this region is split into ko particles

with weight Wy
As particles cross over to other regions, care must

be taken to account for killing off and splitting effects.
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For instance, a particle in region I may acquire enough
energy, either from electric field or by superelastic
collision with the excited atoms, to cross over to region
1I. Then we should generate k, particles (k3 = kl -kz) in
region II with the same energy;

Particles from the high-energy region may lose part
of their energy by inelastic collision such that they
cross over to the low-energy region. Then killing off should
be effective, Tor every k3 such particles that cross over
from rggion IT to region I, only one particle survives.
The values of k1 and kz can be chosen according to the
total number of particles in the system to be processed,
the source rate, and related accuracy requirements. They

a . «nput parameters,

D. Initial Guess

Monte Carlo methods comprise that branch of experimental
mathematics which is concerned with experiments.on random
numbers. The user, like the experimental physicist needs
theory and knowledge to give structure and purpose to his
experiments, and as experimental work provides growing
insight into the nature of a problem and suggest appropriate
theory. Good Monte Carlo practice shoﬁid keep this relation~
ship as a general maxim.

The basic procedure of the Monte Carlo method is the

manipulation of random numbers, but these numbers should not
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be employed prodigally. Each random number is a potential
source of added uncertainty in the final result. Thus it
will usually pay to scrutinize each part of a Monte Carlo
experiment to see whether that part can not be replaced

by an exact theoretical analysis contributing no uncertainty.
In other words, exact analysis should replace Monte Carlo
sampling wherever possible. Sometimes reliable intuition
would aid in increasing the efficiency of Monte Carlo
calculations. For the plasma system we are simulating, the
straight-forward appiroach would be to follow N source
particles on their life time history, until they lose energy
sufficient by collisions to reach a thermal equilibrium.
Over 50 inelastic collisions generally occur, and the
probability (inelastic cross sections) for inelastic
p-ocesses is low. Consequently, the particles travel a
relatively large distance which consumes a good amount of
time. Thus a large number of time cycles would be required
before the system reaches steady state, To avoid this, we
use our intuition, to start off with a guessed initial
distribution. The electron energy distribution £(E) (or
electron number density distribution) is a function of the
electron's energy E. Initial particle data is genetated
using this distribution, and this can save considerable
irrelevant computations. This idea is simple, yet very
useful and effective. Without an initial distribution,

the problem would require hundreds of time cycles to
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converge. However, with a reasonable guess, good results
have been obtained in as little as tens of time cycles.
0f course, the better the initial guess, the faster the

convergence,

E, Antithetic Variates

When we estimate an unknown parameter 8 by means of
an estimator t, we may seek another estimator t!' having
the same (unknown) expectation § as t but a strong
negative correlation with t, Then 1/2(t 4 t*) will be an

unbiased estimator of 8, and its variance is

Var[%&t+t')]= %var(t) + %var(t') + %cov(t,t') (54)

where cov(t,t') is negative, and

var(t) = £ [(t-u)?]

covit,tt) = £ [(t~ukr(tr-ur)]}
u,u' are the mean of t,t' respectively, and &(x) is the
expectation of the random variable x.

It is possible to make vapr(ttt') smaller than var(t)
by suitably selection t'. For example, l-r is uniformly
distributed whenever r is, and if f(r) is the unbiased
estimator of 6, so is f(l-X). When f is a monotone function,

f({xr) and £{1-r) will be negatively correlated, Thus we

could take

(t+tr) = 3 t(r) + 3 £(1-r) | (55)
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‘as an estimator of 8.

The name and idea of antithetic wvariates was first
introduced by Hammersley and Morton (13, 14) during attempts
to improve Buffon's needle experiment for estimating the
value of 7T (3,1415926),

The main idea of antithetic variates is based on the
underlining theorem [from Bammersley and Morton {(12)]
which can be stated informally as follows: "Whenever we
have an estimator consisting of a sum of random variables,
it is possible to artange for a strict functional dependenpe
between them, such that the estimator remains unbiased, while
its variance comes arbitrarily close to tli. smallest that |
can be attained with these variables". As the name implies,
antithetic variates are the set of estimators which mutually
compensate each other's variations. Essentially, we
rearrange the random variables by permuting finite subinter-
vals in order to make the sum of the rearranged functions
as nearly constant as possible. .rom the practical viewpoint,
the mathematical conditions imposed by antithetic variates
to the Monte Carlo calculation are quite loose and flexible.
It is relatively easy to find a negatively correlated
unbiased estimator to produce an efficient variance reduc-
tion scheme,

A system of antithetic variates is obtained by simple
transformations based on a stratification of the interval

{12). The transformations are constructed in such a way
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that the efficiency of the method will increase as a higher
power of M (the number of antithetic variates taken). The
transformations considered are linear combinations of the
values of the function f at a number of points. Thus a
correlated stratified sampling technique is developed, and
its efficiency ygenerally exceeds that of crude sampling by
a factor M3.

The following useful transformations are obtained in

this manner:

1 & :
t; = E-Z;l {af(ari) + (1-a) f[a+(1-a)ri]} {56)
1 n
= - G f(r )
n ;-:1 (o1
1 n
t2 = 3-17.;1 {uflar,) + (1-a) £[1-(1-0)r,1} (57
1 & .
= _Z;..l ‘,Zf“f(ri)

The value of ¢ is between 0 and 1, the variance
var(tj) has a minimum at some value of &. An adequate

rule of thumb is to choose a by finding the root of
flu) = (1-a) £(1) 4+ of(0) (58)

Another useful transformation is

m .
1 X+ ~ hd
ty = E‘é;of(—a-—) = U £(x) (59}
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In general, the variance of crude Monte Carlo. is
var(t) = 0(m~!) while the variance of t, is var(t3) =
o(m™?™), (M > 1). The simplest form of antithetic
transformations have proved quite successful in neutron
transport calculations.

The general notion and a simple form of antithetic
variates are applied in our present calculations. High
efficiency gain can be obtained easily if it is used
sparingly and at judicious points in the computation. We
have used the random number ri(ri e(0,1)) most of the time
for playing the law of chances, and 1--ri is another randoﬁ
number of the same kind which is the image of r,. The
two are used together in good many places where repeated
use of ri'is required. This serves the purpose of two
antithetic variates and cuts the labor in half (same
random number . being used twice), Equations 55 and 59
have been used in the initial data preparation program and
source routine where initial particles states (&, ,u,,z,,wt,),

Ei are generated according to input initial distributicn.

For instance:

ui = zri—l, ui+l = 2(1-1:‘1)-1

zg =T d, 25 .4 = (1-r;)-q

E; = E_ + rj« AE,, Ei+1 = B, + (l-ri)-AEk (50)
E. = E, for source particles,

i 0

Here k is an energy index, or kth energy interval.

Wherever r. appears, r, and l—ri are used interchangeably.
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Thus we are generating source particles from diametrically

opposite directions, or from symmetric locations.

F. Double History {(Double Processing) Technique

In the particle tracing routine, using the general
idea of antithetic variate techniqﬁe, we have adopted a
Wgo-called* double history processing technique which is
described as follows:

a)} In the course of tracing the particle‘'s history,
in each time cycle, we use the transformed random number
A linx] to decide the distance to collision dcol].and go
on until the particle reaches census time, However, we
process the same particle twice under the identical
initial condition except that we use A:Jln{l-r)] as the

distance to collision d Both sets of history are

col 2°
ta lied but only one set of particle data is'stored.
’This way each particle is processed twice independently
but correlated in such a way that they compensate each
other's variation (variance).

b) Another alternative for double history processing
is, to play a dual direction random walk instead of dual

L}

collision distances. We process the same particle twice

in such a way it looks like there are two identical particles

emerging into the system in two diametrically opposite
directions., Again both histories are tallied, but only

the original particle's data is stored.

B T v
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The two versions of the double history processing
technique increase the labor {(computation time) by a factor
of 1.2 to 1.5. The efficiency gain is difficult to specify.
At least it is certain that the gain is more than double
the total number of the particles .in the system.

The purpose of dual processing is to éompensate each
particle's variation and minimize the variance (statistical
errors). One set of particle data in dual processing is
thrown away, while the other set is stored just like normal
processing. Which ohe of the two resulting sets is saved

is completely random.

s 4%’;1._:)_: ;
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CHAPTER IV

MONTE CARLO SIMULATION CODE

A, Introduction

This chapter presents the complete Monte Carleo simula-
tion program, including an input, oﬁtput, main flow chart,
and the background theory and techniques incorporated.

This program implements the condensed history approach that
was described in Chapter II together with various variance
reduction technigues described in Chapter IIIL.

The basic Monte Carlo calculation can be described most
easily by reference to the simplified flow chart shown in
Figure 4. By means of this flow chart we shall follow the
particle tracing process, making relatively brief comments
on the various steps implied by each box, on each routine,
and on the main program variables, The program is written
in FORTRAN IV and is designed to be run on IBM 360/75 under

the HASP-MVT system.

B. Calculational Procedure and Program Description

To obtain an overall view of the calculations, we note
that there are three basic steps involved in the simulation
process, The first is the initialization of all parameter
values, i.e., prepare the particle data and predict the
unknown dominate parameter values, The second is the main
loop of particle tracing which generates census information,
The third uses the census information and takes tallies to

estimate the histograms (electron energy or number density
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If a prescrihéd number of time cycles
have been processed, output and stop.

Y

Flow chart of the Monte Carlo éimulation code,
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frequency distribution vs. energy), and parameter values.
Finally the dominate parameter va ues are corrected and the
program returns to the first step,

Let us follow the logic flow diagram (Figure 4) in the
order of the number marked on the left hand side of the bhoxes,
and describe their individual functions,

1. Input Control: The main program is usuaily compiled
and the loaded version is then stored on disk storage,
ready for execution. 1In order to offer a wide flexibility,
the following input parameters are used to control the
program runs.
a) NDISK: program start control, The program can
start from the beginning (¢ycle 0), or it can
start from the stopping point of the previous
run, This feature enakles long runs to be
broken up into several short runs, It also
offers debugging flexibility and economy of
computer time. While a long run may run
up to 150 time cycles, we can always break
it up into multiple nUmbers of fives and tens
cycles, Thus we can adjust other parameter
values on a cut and try basis without wasting B
much computing time, The input parameter
for this control purpose is NDISK: input O

for storing from very beginning: input 1 for

Fr s wn

starting from the latest tenth cycle of last
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c)

K1, X2,

NTC:

DTC:
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run; input 2 for starting from the iatest
fifth cycle.

and EDl: Regional weights and dividing
energy. The Russian Roulette and splitting
variance reduction techniques use three
inpu; parameters to control the amount of
killing off and/or splitting of particles.
This also determines where to divide energy
regions for the Russian Roulette and
splitting, assuming that the option to use
Roulette is selected. The input parameter§
are K1: the weight of particles in region I
(K1 > 1), K2: the inverse of the weight w2
of particles in region II where w2 = 1/K2

(K 2 é.l): EDl: the energy dividing line,
namely (0 to ED1) is region I, (EDL to Ej)
region II where the energies are in electron
volts.

The total number of timecycles to be run.
The input parameter to control the length

of census time At of the time cycles., In
terms of distance travelled by the particles,
At is equal to a fraction or multiple of
one mean free path , corresponding to

average energy of particles in the system,



ey y

%m‘ﬁx‘wu‘n&'t-‘-\.m- e

d) NTP:
NTW:
NS:
e) KELC:
f) EDP:
EDPO:
g) NIP:
TUSN:
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The total number of particles that actually
exist in the simulation system.

The artificial* total number of particles

in the system during Russian Roulette and
splitting games,

The number of source particles injected into
the system during each time cycle.

The input parameter that controls the impor-
tance sampling option of the program, i.e.,
the multiplying factor used to suppress the
elastic cross section (reduces the probability
of elastic process by a factor KELC).

The input value of the ratio of the electric
field strength to the pressure.

The input value for the reduced pressure of
the system (p/pO where p, = 1.torr).

The input parameter used to control double
processing: NIP = 2 for double processing,
NIP = 1 for single processing.

IUSN = 1 for dual-collision type double
processing

JUSN = -1 for dual-direttibn type double

processing

*The total number modified by scaling and weighting

factors.



h) D:
JZ:
i) NCUM:
NAVE :
i) EQ:
SR:
k) FID:
1) NuUsC:
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The input value of the width of the slab
(diameter of the cylinder) which defines
the external boundaries of the medium,

The number of zones the slab is divided
into, or the number of internal zones,

Inp t control to give cumulative results
(time average) over the time cycles or a
cumulative average over NCUM time cycles.
Input constant to control the power of At,
{or AD) namely Ati**NAVP is the weight of .
the cycle to be used for cumulative results.
These two parameters are used to implement
antithetic variates techniques along the
time axis,

The energy of source pérticles.

The rate of the source particles entering
the system,

An array that coﬁtains the initial guess
distribution (number density vs. energy).
An input parameter used to control the up-
scattering slastic collision process; NUSC =
1l: with upsacttering, NUSC = 0: without

upscattering.

Data preparation: The initialization is entered only

once during the calculation, where the time cycle is 0

(or at time t;), After the input phase, all the pertinent
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parameters are set to their proper permanent or temporary

values, Before entering the next phase to trace the
particle histories, several dominate parameter values
must be predicted., The data preparation routine is
called in to generate particle data (Ei: energy, u,:
direction of travel, Z,: position, Wt,: weight) based
on the guess for the initial distribution (generate
machine particles). Then the average energy of the
system is calculated and is used to predict the census
time (At or equivalently DCEN) as well as the number of
ions(N*),

Particle tracing: With the poiht of origin, direction
of propagation, and energy (velocity) known for the
initial source particles, the next phase follows the
particles through a series of stochastic interactions
until the census time is reached, and the particle data
and parameters values are tallied and updated. During
the course of tracing the particle histories, all the
relevant events are recorded and later on can be inter-
rogated to provide the ocutput quantities of interest.
This section of the program is the central part of the
main program, It contains the main loop for tracing all

the particles in the system in a self consistent way.

Most of the variance reduction techniques are incorpsrated

here, including double processing, Russian Roulette,

and splitting, as well as the various versions of
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importance sampling techniques,

Secondary particle tracing: The residue particles, i.e,,
particles generated by ionization collision process

(the secondary electrons so produced) are treated in all
respects like the regular source particles, except that
their starting positions and time coordinates as well as
directions are those associated with the particles that
generated them, These residue particles may go further
and produce other residue particles (secondary electrons)
if their energy is high enough, thus forming a short
production chain., The probability of such chain produc-
tion is small however, since thé average energy of the
secondaries is quite low. The end of the main loop
comes after all such residue particles are processed.
Data calculations: The details of the phase of the
computations depend upon the specific goals and charac-
ter of study. Our primary interest is the particle
energy distribution (or number density vs. energy). -
This frequency distribution and other pertinent para-
meters are estimated (or calculated) using the stored
data from various parameter counters in the main locop
{(tallied information) as well as tallied histories.

The quantities of interest include local values (for
the current time cycle only) and the cumulated values
from several time cycles. After these calculations, the

next phase is to prepare for the processing of new time
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cycle,
Normalization and printout: Up to this stage, all the
output quantities have been calculated. Next thc output
information is printed out, and at the same time, if the
cycle number is the multiple of five, all the particle
data and related parameter values are stored on the disk,
Then the next run can be read off of the disk and the
process can proceed from where we left off the last time,
All the parameter values are again initialized, and
new source particles are generated for the next time
cycle, Particles that have escaped from the system ¢«
have been absorbed create holes in the particle data
storage which are filled up by the new source particles
and the residue particles produced during the time cycle.
Before going on to the next cycle, the ion density is
renormalized and corrected in a semiadaptive way accord-
ing to a balance factor BF. The ion density distribution
parameter N* is a dominate parameter since it affects
several processes such as the rate of recombination and
the rate of super-elastic collision (refer to Equations
27 and 28). It is corrected in such a way as to
accelerate convergence, till the system reaches a bal-
anced situation. Then increment time from t" to tn+l.
The output guantities are the following:
a) The kind of gas in the medium, source particle
energy, pressure, slab thickness, and At the time

interval of this cycle.
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b) The number of time cycles, the time in seconds,
the number of soufce particles generated during the
cycle time, and the average energy of the particles
in the system.

c) The number density distribution vs. energy, the
single cycle distribution, the cumulated distribu-
tion, the number-density déviation, the average-
energy deviation, the average energy, and the energy
interval vs. ensrgy.

d) The number density and the average energy vs. z
(positioh zone) . |

e} The ion distribution (N4), the number of ionizations
(NI2N), the number of escaped particles (NES), the
nurber of absorbed or recombined particles (NAS), the
number of super-elastic collisions (NSE), the number
of excitations to metastable levels (NMET), and the
number of excitations to other levels (NEXC).

£f) All the input control parameters as listed in
section IV=l,

g) The electric field strength (EF), the source rate,
the W-value, the average energy of escaped particles,
and the average energy of absorbed particles.

h) The number check on the density disbributions.

All the above outputs include both current cycle

values and the cumulated values over the past cycles.
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Final checks: The last stage is to check whether the
prescribed number of time cycles have been processed,
adequate statistics have been collected, and all the
useful data have been stored on the disk. If so, the
program stops.

Further programming details are provided in Appendix
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CHAPTER V
RESULTS

A, Convergence and Reliability
The present Monte Carlo Model is a predict-correct
iterative scheme, with semiadaptive control ability. For
such an iterative proéedure, our main criteria for the
evaluation and determination of convergence are based on
the following inferences;
1. The balance factor (BF) as defined in Chapter II
(Section II-B-3) signifies whether or not the system
has reached steady state, i.e., converged to a final

solution. At steady state, the value of BF should be -

approximately equal to unity. It may approach fo unity

in both directions, and due to semiadaptive control

procedure used, it may oscillate around unity. Larger

amplitude oscillations are observed at first, but they

rapidly damp out.
2. The estimated values of the major parameters, e.q. the

average energy and the W-value show a similar fluctua-

tien, and then they converge to neariy constant values

as steady state is approached.
3. The validity of the convergence has been checked using
test problems where analytic results are available.
A good comparison has been obtained, showing that the
program and the model are working correctly, free of

ocbscure errors.



64

B. Exrror Estimation and Analysis

1., Error Analysis

1. As mentioned in early chapters, Monte Carlo simula-
tion is eguivalent to performing mathematical experiments,
the results being based on observations of such experiments.

From this analogy we can derive the following procedures

for the analysis of errors or accuracies of our calculations.

It is convenient to subdivide experimental errors into
three broad types, namely: random errors, systematic errors,
and blunders, In general, the experimental error is some
additive function of all three, while blunders can hopefully
be eliminated. We shall describe them in detail in follow-
ing sections,

a. Random errors -~ such errors are of great concern in
Monte Carlo type calculations. They generally involve
statistical fluctuations or deviations, representing
the difference between the singly measured value and
the best value of a set of measurements, i.e., the
difference betwsen the arithmetic mean and the true
mean. Sometimes such errors are referred to as ele-
mentary (or inherent) errors in the measurements. The
commonly used measure of random errdrs is the variance i
or standard deviation.

b. Systematic error - a systematic error tends to have

L i e

the same algebraic sign,i.e, itis either an additive

or subtractive gquantity introduced in the measurement
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process. It is an unpleasant and insidious contribu-
tion which is not generally amenable to statistical

treatment. Thus such errors seriously impair the

reliability of the estimation. Typical examples
include:

é i) 1Incorrect assumptions or approximation in the
representation of certain procesées.

! ii) Constructional faults and mistakes in the

- algorithms or subroutines.

H iii) Inadequafe regard of constancy of experimental
conditions or inadeguate sampling techniques

(biased).

¢, Blunders - these are outright mistakes which should be

corrected by all means. Possible examples inélude:'
: i) Incorrect logic, misunderstanding of the problems.

ii) Errors in transcription of data.
iii} Mistakes in constants used.
iv} Confusion of units.

In any type of calculation, the systematic error as weil
as blunders should be removed._ One way for detecting such

errors is to compare the program against some known reliable

solutions. Only the random errors are subject to reduction
by the various treatments amenable to attack by variance -
reducticn technqiueé.

The precision in an estimated (mean) value is propor-

tional to the reciprocal of the statistical error and is
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high if the statistical error is small, i.e. the accuracy

is high if the net systematic error is small. Usually,

but not necessarily, high accuracy implies small statistical
errors as well.

As discussed in later sections, our model and program
has been checked against several test problems, and good
agreement has been obtained. Therefore, it'can be assumed
that any serious systematic errors have been removed and
that the program is free of blunders., Thus, we shall con-
centrate on the analysis of random errors.

No thorough analysis of variance has been made. Due
to the intricate way that the histories calculated during
a given time cycle depend on previous time cycles, a
meaningful variance estimate beyond the first time cycle
seems to be out of the question, However as the system
reaches steady state, the deviations or variations (statis-
tical fluctuations) of the estimated parameters can be
estimated by means of standard deviation (or variance)
over subsequent time cycles. Namely, we use the following

formulation: 1/2 -

5 2
n

where Ss: the standard deviation at the ith energy iaterval
over n consecutive time cycles,.

S, =
1

¥ i (61}

£..: the parameter value (density distribution func-
1J tion of ith energy interval, at jth time cycle,

?&: the average parameter value of ith interval over
: n time cycles, :

o TN VP

L mdn ot ity Lt
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A heuristic approach was adopted to measure local deviations
or statistical fluctuations at each time cycle. This pro-
vides a relative magnitude of deviation or dispersion which
can be used to compare the various variance reduction tech-
niques. The approach is described as follows:

The estimated major frequency distribution (the elec-
tron energy density distribution function in our case) is
obtained in the form of histogram. The abscissa of the
histogram is divided into so-called class intervals (energy
intervals in our calculations). In each such interval an
erect rectangle (block) of heigh fi and width Ei is formed;
This block-area type of distribution is the fitted fre-
quency distribution curve. We devise a numerical descrip-
tion of local deviations by defining:

i) the location index of the center of the erected
rectangles in the histogram'as i and with abscissa
value Ei.

ii) the spread or dispersion around the center.

The total number of particles in each class interval
(energy interval) is proportional to the area of the
rectangular flock (fi AEi), the particle's energy in this
class interval falls in the range (Ei - AEi/Z' Ei 4 AEi/Z)
with overall average energy'fi = Ei' Then the following

relationship holds (refer to Figure 5):



Figure 5.
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AEi ) Afi
AEi fi
AE;
or Af, = £, =w— (62)
1 1 AEi

where Nﬁi is the deviation of the average energy'E'i from Ei
or dﬁi = fa - E;. Also Af; is the corresponding deviation
of the frequency distribution at location index i.

Equation (62) provides a relative measure of the ampli-
tude of the deviation of density distribution curve at energy
Ei which can be used for comparing the efficiency of
different variance reduction techniques as well as provide
an heuristic clue to the modification of the fitted density

distribution curve.

2. Data Filtering

The random errors {statistical fluctuations) rasult
in bumps and ridges in the eﬂtimatea frequency distribution
function. It may be possible to alleviate many of these

distortions by means of data smoothing techniques (data

filtering).

Two types of data smoothing techniques commonly used
in the processing of time series might be used here:

a. Moving averages -~ this technique operates by replacing
each point of the frequency distribution function
(height of the histogram at Eivi) at time cycle tj
with an average value of several subsequent points

in the time cycle series. Thus if fij is the value
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of fregquency function at ith energy interval and jth
time cycle, then fij is replaced by
M

£, W,
?:1 1377 I0M

o B s i R -, R A e L

where Wj' the weighting factor' for the jth time

cycle, usually has the value of 1 or we can define it
as a function of Atj. The value of M is the number of
successive points of the time cycles to be included

in each average.

b. Parabolic filtering ~ this is similar to the moving

averages technigue, but M is selected as an odd number,
the point to be replaced is located in the center of
these M points, and a parabola is fitted to these points
by means‘of least squares. Thus it is replaced by the
corresponding point fi on the derived parabola. The
process 1is repeated by shifting the center point to the

: next one in the time cycle series.

The technique of moving averages (a) is employed in
the program, because of it's simplicity and the fact that
the parabolié smoothing technique is too sensitive to the
changes in tﬁe distribution function. Note that this
! smoothing (filtering) technique only becomes effective as

the simulated system reaches steady state.
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C. 8Solutions of the Problem

1. Preliminary Checks 1
In order to verify that the model is valid and correctly.
working, and the computer program is free of bugs, blunders,
and systematic errors, we solved a specific problem first
reported by J. A. Smit (11) and later extended by Heylen and
Lewis (10). Their solutions for the electron energy distri-
bution were obtained analytically based on the Boltzmann
transport equation for the special case characterized as
follows:
i) electric field present
1i) no external sources
iii) dinfinite size medium of background noble gases,
The comparisons are made for helium gas at E

. £/p
10 V;cm‘l. (E electric field strength to pressure ratio).

=4, 5

'
£/p
The results are shown in Figures 6, 7 and 8. Both Smit and
Hevlen's results have taken into account all the collision
processes including those due to elastic loss as well as
inelastic losses. Ieylen's results is more up-to-date, for
1owEf/p values onlyEf}p = 5 is given, which was chosen for
the present comparison. In so far as possible, the same
cross sections as Smit and Heylen and Lewis used were
incorporated in the present calculations. The slight
discrepancies apparant at the low-energy end is probably

due to differences in treating the scattering process, and ;

- reo.
- .
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the many approximations required in their analytic solutions.
Also, some of the cross sections used in this calculations
are experimental values, which may differ by some amount
from that used for analytic solutions.

For the high energy region, (near the source energy)
checks have been made against the analytic¢ solutions
reported by Lo and Miley (32). As shown in Figure 9, the
general shape of the electron energy flux distributions are
in reasonable agreement. In this case it was not practical
to use the same cross sections as incorporated in the
analytic solutions, and this may account for some of the
differences observed. Also the analytic solutions are
obtained for an infinite medium vs. a 1 cm slab in the
present case, Thus the analytic solutions do not allow
leakage, although this becomes important in the present
calculation for low pressures. Lo and Miley's results are
plotted in Figure 9 for the source energy EO = 1500 eV
and E, = 500 eV, whereas the present results are for E0 =
1000 eV. The plot shown is for the flux density (normalized)
instead of energy number density. They are related as

follows:

P (E) = £(E)-V(E) | - (83)

where Sp(E): electron flux density
f(E): electron number density

V(E): Electron kinetic velocity
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Since we only intend to compare general shapes of distribu-
tion, the normalizations used for the various curve, shown
here are arbitrarily choosen for optimum display of informa-
tion.
2. The Electron Energy Distribution Function without

Electric Field

The calculations for electron energy distribution funce-
tions for helium with a high energy eiectron source, but no
applied electric field (Figures 10 to 14) were carried out
at two different pressures and various source raﬁes. The
slab thickness D is chosen to be fixed at D = 1 cm, which
is equal to the actual diamter of cylindrical tube useG in
the laboratory (7). The two pressures are chosen to be
P = 10 torr ahd P = 760 torr, corresponding to a typical
low-pressure case and.a normal atmospheric pressure,

We have chosen two different source energies (EG),

one at E, = 1,000 eV and the other at E, = 70 eV, These

0
values roughly correspond to the highest energy and the
average energy in the primary electron energy spectrum for

MeV alpha-particle irradiation of helium as done in the

experimental studies conducted at the'University of Illinois

The range of interest for the source rates for a boron

coated tube irfadiated in the Illinois TRIGA reactor lies

14 18 3

between 10 to 10 (#/cm

-sec). However, results shown

16

for source rates above about 10 are questionable since

the resulting ionization density becomes large enough that

(6).
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electroi~electron collisions become important, and this
process was neglected here,

The major quantity of interest here is “he electron
energy distribution function which were defined as n™ (E)
in Chapter II. For simplicity, we represent the normalized
distribution corresponding to n {(E) by £(E)}. This

normalization is defined by:

B
(o]
j f{(E} dE = 1 (64)
(o]

For the plasma system without electric field (E_ = 0),

£
the distribution functions with rource energy EO = 1000 eV
are shown in Figures 10 and 11 for the pressure p = 10 torr,
and p = 760 torr respectively., Similar distribution func~
tions for Eo = 70 eV are shown in Figures 12 and 13,

An idealized Maxwellian distribution plué 1/E tail.
are shown in Figures 10 to 13 for reference, (The Maxwellian
plus 1/E distribution was used as the initial diséribution
for these calculations. Note that since this curve ié for
refercnce only, it is arbitrarily normalized to a point on
the Maxwellian curve and does not satisfy Equation 64.)
For the ranée of source rates mentioned, the calculated
energy distribution for helium (He) are reasonably Maxwellian
at low energy region. The differences due to variations in
the source rates show up at the high energy end, especially

near the source energy, where the magnitudes seem to depend

linearly on the values of source rate.  This is somewhat
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deceptive, however, since the absolute magnitude at any
point is due to the normalization. (This point is stressed
again later in connection with Figure 24).

The fact that the distributions drop off rapidly for
energies above about 20 eV is attributed to the fact that
the threshold energy for inelastic processes is 20 eV,
above which energy the ionization and excitation processes
bring more electrons into the low-energy region.

In order to investigate the change in distribution
function at very high source rates, a calculation for So =

10?2

particles/cms-sec was carried out,. As mentioned
earlier, the neglect of electron-electron collisions makes
the accuracy of this calculation questionable, Still the
trends are of interest, and it is seen from Figurell4 that
the distribution curve changes drastically. In fact, it is
no longer Maxwellian at the low-energy end. Due to the
high source rate, more high-energy particles and more
particles with energy in the range from 0.3 eV to 20 eV

are present in the system.

As discussed earlier, the distribution curve droﬁs

sharply for energies above the excitation threshold energy

{at E = 20 eV) due to the dominance of ionization and excita-

tion collision processes., At the higher pressure, the
distribution curves decrease more rapidly compared to low
pressure, sinee increased scattering slows the electrons

down more rapidly. This effect is shown in Figures 15 and 16,

e
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16 3

for the same scurce rate So = 10 (#/cm”=-sec) and source
energy, but two different pressures, The reduction in
magnitude of the high energy tail as the pressure increases
is clearly illustrated.

In these calculations, the rate of both leakage and
absorption (recombination) are strongly dependent on the
pressure. At higher pressures (e.g., p = 760 torr), very
few particles leak out of the system, and the loss are
dominated by the absorption process, For lower pressure
(p = 10 torr), fewer particles are absorbed, while more
escape or leak out of the system. Also, more particles
escape in the high-energy region, but the absorped particles
are mainly in the low-energy region.

The estiﬁated major parameters are summarized in Table
1, which includes the average energy of the system (ﬁ),
the number of positive ions (N¥) and the W-values for various
combinations of source rate So, source energy B and pressure
p-

The W-value is defined as the amount of energy
lrequired (input) to produce an "ionization pair (positive

ion and electron}, or

(N..E_ = Ep__ = Ep_,)
W-value = —ml 5 == Tab (65)
v z

Where NS: the number of source particles introduced into
the system during the period At.

ETee: the total energy lost with escaping particles
¥ during the time At.
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Table 1. Calculated Parameiter Values for the Plasma
Without a Electric Field

* 0 E, S, E Nt
{torr) (eV) (#/cmB-sec) (eV) {#) W-value Range
10 1000 1018 0.171 0,125 x 10¥* 41 - 63
10 1000 1016 0.157 0.125 x 1013 35 ~_ 53
10 1000 1044 0.111 0.125 x 10%2 49 —~ 58
760 1000 1018 0.167 0.583 x 101° 32 — 38
760 1000 1016 0.123 0.446 x 107* 40 —— 65
760  1.000 1014 0.104 0.67 x 1013 35 —_ 54
10 70 1018 0.104 0.125 x 1074 50 ~_ 62
10 70 1016 0.082 0.125 x 10%3 47 ~— 63
10 70 1014 0.075 0.124 x 102 40 —~—57
760 70 108 0.082 0.16 x 10 ¥ 47 ~—-565
760 70 1016 0.075 0,141 x 10** 42 —~— 58
760 70 1014 0.075 0.157 x 10*> 39 ——55
Maxwellian distribution
| 0 0.05 _— —

*P: pressure, Eo: source enerqy, SO: source rate,
E: average energy of the particles, N': number of positive

ions.



89

Eﬁhb’ the total energy lost with recombining particles
during the time At

Nz: the total number of ionizations produced during
the time period At.

As seen from Table 1, the average energy E tends to be
higher for higher source rates and higher source energy,
and it is lower for higher pressures. However, the differ-
ences are in general very small. (All the average energies
are consistently greater than that of a Maxwellian distribu-
tion). The values for ion density Nt are roughly proportional
to the square root of source rate, and are higher for higher
pressures, virtually independent of source energy.

The W-values are quite sensitive to statistical fluctua-
tions, and the ranges of variation obtained over the last 10
time cycles In a given calculation are shown in Table 1.

The W-values obtained here do not show any clear dependence
on the system parameters, thus variation indicated may be
totally due to the statistical fluctuations. This is not
too surprising since the W-value is known to be roughly
incependent of particle energy, etc. The W-value for
helium obtained experimentally by Jesse and Sadouski (34)
is 43. A reasonable value to choose for the W-value from
Table 1 would be 50, which is little bit higher than the
experimental result. The reason for this discrepancy is
not clear, but it may be due to small inaccuracies in the
ionization-excitation cross section employed here. The

W-~value is, by definition, quite sensitive to the details



90

of the ratio of the ionization to the excitation cross
section as a function of energy.
3. The Electron Energy Distribution Function with an Applied
Electric Field
The calculated electron energy distribution functions
in He with an applied electric field (Ef/p = 10) are plotted
in Figures 17 to 21, in a manner similar to that in the
previous section. All these calculations are carried out
at the electric field to pressure ratio Ef/p = 10. Smit's
result (without source or S_ = 0) are plotted together with
present calculations at given pressure and source energy

(p = 10, 760 and E_ = 1000 eV, 70 eV), with three different

’

sopurce rates. It is observed that the distribution func-

tions are highly non-Maxwellian. For the source rate in the

18 #/cm3-sec, the distribution

curves at low energy end are gquite close to the Smit's

range 1014 #/cmB—sec to 10

results (11). At the high energy end, they have a shape
similar to the curves of no electric fields. Again differ-
ences due to the source rate show up at high;energy region.
Below 10 eV, all the distribution functions fall on the

top of each other, and they begin to spread out as the energy
increases aﬁove 10 eV. For high pressures or low source
energy, more difference (between SO = 0 and SO # 0) show

up at high-energy end than that of low pressure and/or high
22

source energy. Again at very high source rates SO = 10

#/cm3—sec) the distribution functionchanges appreicably.
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In Figure 21, the comparison is made with a very high source

rate (8 = 1022/cm3
o

of interest (SO==1OlQp = 760 torr), For very high source
rate, the distribution function changes quite a lot:; it
still preserves the general shape, but at low-energy end,
it is much smaller in amplitude. (However, as stressed
earlier, the high source rate calculation is questionable
due to theneglect of electrﬁn—electron interactions.)

The changes in these distribution functions due +to
different pressuresare also shown in Figures 22 and 23.
The observed trends are similar to those in the previous

section for the electric field EF = 0 case,

So far, the normalized distribution functions f(E)

have been displayed. However, to stress the fact that the

absolute magnitudes of the curves depends‘strongly on the

source (shapes have received our interest to this point),

Figure 24 shows the unnormalized electron energy distribution

functions for He (with electric field or E. # 0) are plotted,

with Ef/P = 10, p = 10 torr, E0

14 16

ent source rates‘(86 = 1077, SO = 1077, SO = lOle)ﬂ The
magnitude {unnormalized) distribution is defined as
N~ (E) = N - £(E) (66)

where N*: number of positive ions

"f{E): normalized distribution
The values of N* are 0.24 x 10%°, 0.24 x 10%% and 0.24 x 10!
corresponding to the three source rates SO = 1018, S0 = 1016

-sec) - and with one in the region

1000 eV, and three differ-

3
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and SO = 1014, respectively.

In order to show the effect of recombination, a normal
case is compared in Figure 25 to a calculation where the
absorption c¢ross section was arbitrarily increased 100 times,
It is observed that the major effect comes in at low-enerxrgy
region. More and more electrons recombine as they thermalize
and hence, the lower enerygy region of the distribution is
depleted. Since recombination does not occur at high
energies, this region is not affected.

The calculated major parameter values for the system
with an electric field are summarized in Table 2. As expected
on physical grounds the values of the average snergies for
this casec are much higher than the corresponding values with
no electric field (compare te Table 1). However, other
general trends are the same, e.g. the value of the average
erergies are slightly higher for higher sourcé rate and/or
higher source energy, buit are lower for higher pressures.

For comparison the average energy (7.7 eV) found by
Smit for an electric field and Ef/P = 10 but with no
source present is included in Table 2. It is in general
higher tharn the present values. The reason is not entirely
clear. At first thought the additional high-energy source
electrons might be expected to raise the average enexrgy.
However, as found by T. Ganley (37), the presence of high-
energy electrons to produce ionization allows the electrons
in the Maxwellian region to decrease in energy, and as a

result the overall average may actually decrease.
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Table 2., Calculated Parameter Values for Plasma with

Applied Electric Field (Ef/p = 10)
* p Eo %0, E N+ Modified
{torz) (eV) (#/cm”-sec) Lev) (#) W-value range
10 1000 10%8 8.1  0.24 x 107 35~-44
10 1000 1016 7.5  0.21 x 10%% 34~ 54
10 1000 1ch4 7.3 0.24 x 1013  37.5~60
760 1000 10%8 7.0 0.23 x 1017 37~50
760 1000 1618 6.6  0.204 x 101® 30~51
760 1000 1014 .4  0.24 x 101° 34~57
10 70 1018 5,86 0.21 x 10Y° 31-~135
10 70 1616 5.18 0.21 x 10%% 34—~s50
10 70 1014 4.46  0.213 x 1073 31~ 56
760 . 70 1018 5.7  0.284 x 10%® 35.~46
760 70 1016 5.0  0.26 x 1047 39-—~48
760 70 1014 4.3 0.24 x 101% 32449

Smit!s distribution
#] T.7 - —

&

: pressureg = source energy; S _: source rate; °
al +
E: average ene?gy, N number of Positive ions.
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The values of N are roughly proportional to the square
root of the source rate (recall Equation 33) and are inde-
pendent of the pressure and source energy.

Strictly speaking, the definition of the W-value for
the field case should include an allowance for energy
gaired Lo electrons in the electric field which then
result in ionirzation. There is no way to include this
energy transfer in the present case, so the values listed
in Table 2 are based on the ion pair production uivided
by tre cnergy input with the high-energy scurce electron
alone (no field contribution)., This is, then the same
formulation (E¢g. 65) as that of no field case, and we
lable the result as the "effective!" or "modified" W.value,
Again these values fluctuate considerably, so the ranges
observed in the last 10 time cycles are given, As would be
expacted from the neglect of the field contribution, the W-.
values in this table are in general smaller than that of
no field case. As in the earlier calculation, no general
trend can be observed, as so far as the dependence of the
'parameters (EO, So’ p) are concerned, and this is consistent
with the earlier observations and theliterature which indicate
that the W-values are fairly insensitive to these parameters,

We have concluded so far that,rthe distribution func-
tions for non-field case (E; = 0) are more or less assume
a Maxwellian distribution in the low-energy region fof

source rates below 1018. However, when an electric field
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is added, the distribution shifts to that found by 8mit in
the low-energy region, This is,.in effect, the well-known
Druyvesteyn distribution. It is slgnificant that the addi-
tion of a source adds a tail to this distribution, but it
does not drastically change the low-onergy region., By
intuition, it might bo expected that Smit'g distribution
(with electric field or Ef A 0) would echange back to a
Maxwellian distribution as the electric field approaches
zero, In crder to display the transition region, the

distribution functions for smaller electric field (E 1)

£/p "
are plotted in Figure 20 together with the calculated

diztribution functiens at E, e 10 and B

£/p £
energy taidl of the distribution curve are not significantly

= 0, The high-~

affected by reducing the electric field E but the distri-

fl
bution function in the low energy region starts to approach

a Maxwellian distribution as expected.

D. Conclusion on Monte Carlo Results

Based on the Monte Caxlo solutiens we obtained so far,
we can make the following comments.

1. For the normal range of source rate (8 < 1018),
where the néglect of electron-electron interactions remains
valid, the Maxwellian plus 1/E distrikution is a good initin)
approximate distribution for the no elcetric ficld case.
Likewise the Smit (or Druyvesteyn) plus 1/E distribution is
a good approximate initial distribution to ke uscd for the

system with an eleciric field present. -
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2. Tho dependoner of the distribution functions (with
or without clectrie fiold) upsn the progsure and souree rats
enly nh&un up in the high-anergy remgion, whers tho dist e
bution functions have highiey tails {or higher soureo rate,
and have smaller valuen or nighor progsures,

3. The rango of variations observed in the Waevalus
calevlation reflocte stobistical {luctuations which limit
the caleulaticnal aceuracy of the absclute numoerical We
values. B5till the resulits domenntrate that tho Wevialue ia
more or less indopondent er insensitive te the changes of
prossure, souree rako and source enorqgy.

4. Due o a tight budget, the primary omphanis was
on inareasing the computation efficicney and roducing
the computatien time to a pessible minimum. Thus most of
the calculations woro carried sut with 2000 te 5086 actual
partic¢lies and {or any particular set ef parameter valueg,
and the results weroe generally ebtained within 10 minutes
of (IPM 360/75) computer time. Comparcd with hours of
computer Lime and 5 to 10 times more particles used by
othors for the similar caleulations {a.q., see Referonees
3, 4, and 9) tho gain in computation afficiency sooms to be
signiticant., Of coursec, a complatoe eomparicon i8 net
posaible gince all of thego enleuwlations achieved difforoent
accuracies in the final rogults.

5. The present reosults alog ghew €lofse agreoment

with the amalytie selutions 2% Lo and MAl=sy (32,33) on the
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fallowing pointad

&. The shape of high-energy pertisn of the diRtiibie

tian enrves are in rﬁéaaﬁaﬁla atgreenent ps shown
dn Figure 9. | o o

5. ha Ligh-snergy past of the distribusion funceion

| is not ﬁhgﬁgﬁd by the yrwaﬁnﬁ& of a8 @1ﬁ@triﬁ'
fiald for field values Eg . £ 10, |

. With an olectris Fleld, ths low-ensigy parc of
tho distributisn ﬁu&#figﬂ agrsed  with AGmit'a
regults and this part i8 npt affected appreciably
by source rates < 10i® 9&rtiz£&9!am3~3§e,
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SHAPTER VT
&@Hﬁ&ﬁﬁiﬁ&ﬁ

| ?h@.apyliﬂati@5 ﬂf Mﬁﬁ@ﬁ*ﬂ&:&a tgohniquer to solve

pREBIOLE. CEARRPOYY pfmﬁiﬁma 1a'd£ £unﬁam§nhal interest in
omany fields o phyaled and anginesring; espselially when

- gnalyeic and/or numasiaal'aa&utiwﬁsraﬁ the baslc governing

Ceguationa are ten nomplex to by practical. Yet direct
application of Monte Caxle techriques to simulate individual
- interactions la gometimde prehibitively costly because of
the Iarge ARORBE Gf ﬁamyqt&%;@nai time required, Thus
teohnlguas For impraving the sfficiancy af& requiraed.
Varioun existing variance reduction techniques can be used,
| put they are problem dependent. 'Thus techniques that are
etfieient for one typs of problem might not be as effective
for athix types of problems. Thus such techniques must be
judiciously selected and modified for the particular problem
"ﬁﬁﬁ&t'ﬁbﬁ#i&ﬂi!ﬁién, One basic undﬁtl?inﬂ principlt-which

appliac to sy Monte Carlo caleulation is: Apply as much
ikﬁéﬁn"iﬁfﬁrﬁétibn as one can (given in apalytic and/or

numgyiﬁalrform) to reduce the uncqrtaintitl of_éhc problem.
'Wﬁ&névaf'ﬁdéaiﬁla'Honta'Ciﬁibnak§§?1m¢h£l ihou1d'bo checked

and_xmplaﬁpd_by_a#g¢t thqo:¢t49;1ﬁgnalyqil to reduce uncer-
:: iéiﬁ%lﬁiQIﬂ;IJ':; e _ .-,.”.' R
| The Monte Carlo nxpeximqntaliatlhnu to exercise ingen-

“uity in distorting and madifyinq problems in the pursuit
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of variance-reduction technigues. Although Monte Carlo
methods are general devices, still a great deal of work

de; »nds upon the individual's originality to create special
methods or numerical schemes to suit their needs. Unlike

the physical experimentalist, the mathematical experimentalist
using Monte Carlo Methods has the advantage that his
experimental material consists of mathematical objecta which
can be distorted, controlled, an” modified more easily.

The  “eatest successes of the Monte Carlo method have
arisen where the basic mathematical problem itself consiats
¢t the investigation of some random processes. However,
there are exceptions involving deterministic problem-solution
of boundry value problems and partial differential equations.
The solutions of these problems are closely connected with
the characteristics of certain random diffuaion type
processes (or can be converted to such type of proceases),
therefore these problems are reduced to the modeling of
such processes., Thus the model and the apecial techniques
developed in present research aro quite general in scope,
.nnd it should be possible to apply them to many classes of
Monte Carlo calculations with a certain amount of modifica-

tion.

B, 8 Xe t 3
In this reasearch study, we have devised a general

mathematical model for the particle transport or diffusion
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type plasma problems which have inherent nonlinear proper-
ties due tc recombiration. Many special variance reduction
technijues are incorporated intc tre system, The model can
pe used for calculating both time-dependent and steady-state
nonlinear transport problems provided that suitable methods
exint to calculate, precdict, and corresct the important
palameter s which dominate the nonlinearities. A wide range
of nonlinear problems can be formulated and handled in this
way. The principle idca, the piecewise linearized predict-
corrcect model, 38 a general, simple, and efficient approach
for solving nonlinear problems. 1In principle, most nonlinear
probhloma can be cast in terms of the pasic i1d=as and algo-
rithms of present work. Thia represents an extension of
earlier works of Musha snd Itoh {(8), Thomas {9), and Fleck
Jr. (11). As for the amount of computation time and effi-
ciency involved, the present study has mado significant
improvements., Some of the improvemeénts are a natural con-
sequence of the large atorage space available in modern
computer syatems. Additional improvements come from a few
aimple, but effactive, special tochnigues incorporated inte
the present model, As described in Chapter 11,6 these include:
1) The initial distribution ~ straightforward particle
tracing procedurnz would regquire icllowing every
simulated particle from its pirth (from source) with
initial energy Eo at t = to to the end of its life time

hintoty. This type of simulation would require hundreda
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of cycle times to achieve a final steady state condition.
Instead, we start with an apprixmately steady-state
system by guessing an initial particle energy distribu-~
tion. Then we simulate the system hy tracing particles
atarting with energy corresponding to this input
distrijution. This is eguivalent to skipping over the
initial transient time cycles &nd greatly reduces the
computation time and increases the calculation efficiency,

2) The application of the negatively-correlated variates
(antithetic variates) technique greatly reduces
statistical fluctuaticns with a minimum number of
simulating particlea (machine particles),

3) The introduction of a weighting scheme &and an artificieal
game of chance {using weighted cross sections) contri-
buted some reduction in calculation time and resclved
some practical difficulties. .

4) FPor the aystem with an applied electric frield, the
exact formulation for a parabolic flight path was used
to advance the particles in larger stepe than would have
beon possible uaing the small-step linear approximation
employed by Nusha and Itoh {8) and aleo by Thomas (9).
This improves the efficiency appreciably.

Throughout the entire calculation, one basic balarnce
equatien (Eq, 10} played a very important role. It merely

states that at steady state, the source is balanced by losses.
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By means of this equation, we predict the nonlinear parameter
values ancd provide checks for Canvergence of the solution,

The need for large amounts of storage space for Monte
Carlec calculations no longer creates serious prcblems or
drawbacks on modern large computer systems, such as was the
Cage as recent as scven or ten years ago., In addition,
techniques exist for further reducing the storage reguire-
ment. In the present study, we suggest a technique to
eliminate major storage requirements, and use only a small
amount of storage as a temporary buffer storage (deacribed
later).

In other types of numerical solutions, 2.¢g., in finite
difference salutions of ths diffusion equation, the step
size At 15 restricted by stability requirements. However,
in this present model, /'t i3 only restricted by the degree
and amount of nenlinearities present in the system, This

restriction is far less stringenc,

C. Practical Limitations ard the Cures

It was necessary to soive several difficulties in the
present simulation study in order to provide practical
solutions. WHe shall describe them item by item,

1) The electron eneigy distribution is *he quantity of
Mmajol interest. The difference between the magnitudes
0f 1te maxamum and sminimum RONezcro values is of the
order lﬂﬂ. This 1s due to high gensity in the low-energy

region (therma! encrgy) and the felatively low density

P Y i

e
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in the high~energy regicn (near the source energy).
It is unrealistic to hope to produce reasonable numbers
of particles in the low-density (high-energy) region

and at the same time have 109

times as many in the low-

energy region. This problem is resoived by combining

the following techniques:

a) Russian Roulette and splitting.

b) Weight factors which produce fractional particles,

¢} Logarithmic energy intervals. The number of particles
in each energy class interval AEi is directly propor-
tienal to f(Ei)'AEi (f(Ei): number density at Ei).
By using logarithmic energy intervals, we have small
intervals at low energy region and large intervals
at high energy so that the product f(Ei}*AEi assumes
a practical magnitude. .

The total number of simulating particles (machine

particles) N is limited by the storacve requirement and

the economy of *he calculation (computing time is propor-

tlonal to NT). We have to set an upper limit {Nmax)

on the total number of simulating particles in any time

cycle. During each time cycle of duration 4t, N_ source

particles are introduced into the system, and Nz secon-

dary particles are produced (by ionization). At the

same time Nes particles escape from the system, and NAb

particles are lost due to recombination.

There are two conditions to be satisfied at all times:
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al Nc + N (67a)

7]

o “
+ Ns —_ NT e Nmax

b) N, + NS:: Noo + Nag {670}
where Nc: the number of census particles (background
particles),

Condition a) insures that total number of particles
in the system is always under the limit (Nmax). Condi-
tion b) indicates that a particle balance should be
satisfied at steady state,

In the program, there are two equivalent problems to
ba considered. One is the balance of the machine
particles [corresponding teo condition (a)], and the
other is the balance of simulated particles [weighted
particles, corresponding to condition (b}]. Both condi-
tions must be satisfied simultaneously. Condition (a)
allows a certain amount of leeway since the number of
particles that survive the integration cycle (time cycle)
and hence require storage will be less than NC + NZ L NS.
Here N, is chosen é; be an input number, the weights of

these particles are determined by the source rate, If

condition (a}! can not be met, N_ is taken to be

N = N ™ N, ~ N, - JZ - 1 (68)

where J% is the pumber of spatial zones. It has been
shown (1i2) that Equation 68 insures the stabilization of
census population without overly reducing the number of

source particles.
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The proper selection of the energy dividing line
{(ED1) for Russian Roulette and splitting can insure the
satisfaztion of condition (b). Also as mentioned in
earlier chapters, the balance factor (BF) is used to
speed up convergence and force condition (b) to be
satisfied sooner.

In any Monte Carlo calculation, finite samples are

used to estimate or simulate the behavior of a large
parent population. This is the main source of statistical
fluctuations (variance or uncertainty). In the present
simulating system, less than 5000 particles were used to

14 physical particles. This

simulate approximately 10
creates the problem of matching the values of input and
estimated output quantities. Due to the huge scaling
factor (1014/50003, a small amount of statistical fluctua-
tion or estimation errcr in the estimated value will be

amplified about lOll

times. To avoid this, we use the
estimated (ox equivalent) input quantities which carry
the same order of magnitude of statistical fluctuation
and weight.

There are several reasons that make the logarithmic
enerqgy écale the logical choice for the group intervals
in the enzrgy axis of phase space. These include:

a) the wide energy span (0 to 1500 eV)

b} the relatively high number density at low energies

combined with a low rate and small amount of energy



116

exchanhge due to collision processes. In the high-
energy region, the situation is just the opposite.
c) to produce reasonable number of particles in earh
energy interval [for the reason mentioned in the first
section (II-B-1)]. The size and numbker of intervals
are mainly dictated by the range of data (energy
range in this case) and number of observations
available. Excessive fragmentation of the data
may produce many intervals with few occupants. On
the other hand, insufficient divisions may obscure
important dispersions, Thus an optimum number of

intervals will be a compromise between these extremes.

D. Future Extensions

The Monte Carlo methods are applicable to the most
widely diverse branches of computational mathematics includ-
ing particle physics (neutron transport for instance),
operations research problems such as the investigation of
servicing processes, modelling the processes of information
transmissicon,in communication theory, the evaluation of
definite integrals, the solution of partial differential
equatibns (é.g. boundry-value problems): the solution
of systems of linear equations - inversion of matrices, and
many other applications. Problems handled by such methods
are in gencral of two types, the probabilistic and the
deterministic, according to whether or not they are directly

concerned with the behavior and outcome of random processes,



117

Their basis lies in simulating statistical experiments by

means of computational techniques. Based on the underlying

principles described earlier, various variance reduction

techniques can be applicd. The present work serves as an

example and guide for using the important new technigues

such as correlsted sampling.

1)

2)

3)

The code developed can readily be used to calculate
electron energy distribution functions for other gaseous
media by merely c¢hanging the cross sections input. The
model can also be modified to include the electron-
electron and electron-ion interactions although this
adds more nonlinearities into the system. This would
allov calculation for higher scurce rates and cases
wher:: the fractional ionization is large.

Zs for the complex transport problems encountered in
areas such as plasmas physics and astrophysics, the
model and techniques can readily be exctended to the
problems with mcre complex ygeometry and/or boundry
conditions, with inhomogeneous media and multi-dimensions.
Also many kinds of nonlinear features can be studied in
a realistic fashion.

More elaborate error checking and correction procedure
(based on the known physical phenomena or theoretical
formulatiorns) such as the correction matrix used by
Berger (9) should be developed to treat the combined

effect of statistical fluctuations and other types of
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uncertainties, This is essential for generating good
results for Monte Carlo calculation,

Mcre elaborate algorithms or techniques for playing

the artificial games of chance by means of weighted
cross sections would be a good direction for future
research, This must be based on the investigator's
intuition and experience, but still it is a promising
approach for increasing the efficiency.

The present model and techniques can be also iwmplemented
on smaller computer systems such as PDP-1l or other
similar systems where large amount of fast storage space
are not available. The following technigues could be
used to ﬁrocess the calculation without storing all the
particle data (namely E., uy, 2y, Wiy #i). At the
beginning of each time cycle, we generate a small number
(some reascnable amount, s 100 for instance) of particles,
The corresponding particle data can be generated from
the initial input distribution or from last time cycle.
After these particles have been processed, only the
accumulated information is stored. 2 new group of
particles come into the system by generating a new set
of data, based on the same distributions, which are
stored in the same temporary storage space. Tlie pre-
vious particle data is destroyed after they have been
processed. The same process is repeated until all the

necessary prespecified number of particles have been
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processed, and the new distributions arc obtained, This
eliminates the nececsity of storing all the particle

data at each time cyrie, and this eliminates thoe large
arrays that demand the wajor amounts of storage space,
Due to the random nature of the processing algorithms,

and the Markovian bechavior of the time cycle process
{these time cycle processes arce 2 kind of Markov procenss),
this storage saving algorithm can accomplish the desired

results.

E. Concluding Remarks

In developing any Monte Carlo models and performing
calculations, as mentioncd in Chapter V the systematic errors
and outright blunders must be detected and removed by
testing and comparing with known results,

The varisus variance reduction techniques are used to
increoase the relative computation efficiency, reduce inher.
ent raondom errors or statistical fluctuations, TFor botier
calculational results, more samples are favorable even though
‘qnot econeomic., In any Monte Carlo calculation there oexigsts
a minimum number of samples below which the results or
statisticé are no longer valid and dependable regardless
of the wvariance reduction schemes employed. In the other
words, variance recduction techniques help to reduce statistical
fluctuations, but they can not e used to remove all the

fluctuations caused by small samples,
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The minimum samploe siwe is, of ceurso, preblem dependent,
Thore are no definite rules ar formula for it, thus a eut
and try methed 18 noceagary wuntil the ealculatod varianee
i3 acceptable.

Monto Carle caleulations are perhapa bost In the prelim-
inary stagoes where they help te give a generpl idea of the
grtuation and ¢give hints or feolings for tronds. If mere
aceurate roepultis aro nogesanry, Monte Carle caleulations
may vnet always boe nractical good methed., In any ease, the
Mente Carle mothod 18 an important toel in the inferential
phalyaia of the mathomatieal.physies problems, but it
should bo viewed ag supplementing, rather than replacing,

analytic and other numorical metheds,
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8024 DELE L O
[h L DELU»]+H/DELE
6C2s DELE~Z2,.0
0027 .., BARIaG,0 e cmn e m
. opae ATKT= 1. C7ART
i 0¢29 Pind, 141893
3 0930 GHASSI=i. 60203E+16/9.108
¢ 003t KIeR{®K2
) 0032 WNZE:, OF K2
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FORTRAN IV G LEVEL 1b HAIN petE & Til2e 05 a¥7nd
1113} 1 tak=0,0

GG+ El=l4a40 i e e tmmmne e e
o0ss LReEOPSPDPG

0038 E15e2hus . e e et By e
IS Y] Cle2.0C0,00054974. 003473

Q038 i - . . 121 0F Q8
Tl VTE® 1.G7(ETYRETV}

237 CALL UNDERZ{'fiFFt) C o ime s emewn e
G4l PH2onPOR0®26,0

0cs MUQwi 1. QE=CH)/ETY. s v e g
2304} CHUDu],0E-0%

044 ~CNUPOReC NIDERDRD

an&s IF TPDPQLGTV L0601 CTHUPDPeCHUCE1Q.0
0046 PDRUQsL KUPDPILTY

0N T ELS»1.0

0048 NUBa{

0049 NON=0

005¢ . . DRN2=0

Q051 ING»O

nese MRRuQ

nesl Nk§u9

0084 NE$=D

orss NSE=0

0056 NDZN=2

0os7 Al N0

oosH NiN=Q

0959 L¥a0

0040 IN]Y=259399

[ 1.TY) NHET =0

0062 WHNERCED

aesd ETalen,0

0044 EYEPD, @

0068 Lada 14

D0se Huad .

0047 NSTP=G

40466 GOy = e e

n049 WRMET=0,0

0070 HWNIZN®=0,0

nart WNEXC=0,0

0012 WNAS=0Q.Q

0073 WNES=D. O

ocva . MHSE=R.0

cov: CLOSS=0.0

0674 CsF2=0.0

onr? CNID2e0,.0

0078 CSFELa0. D

G079 CETALAD, O

0080 = e

Goal DTAVS=0.0

2082 JE*48

oGA3 {EmJE

+]o52Y DENm ), S4El6020P0

o¢ a8 DETL=D/ 4




E

127

EORYMAN 1Y G LEVEL TB 770 T TTRIINTT CTTRETENCYETIEG O TTUTURPNUrAT
i1, 9 BITV= [ O7IETY

GQ5T . CONST=1.C/4006{2,03

0386 CED2=0.44Y3(Y T R e
WL EDA=19. 3 o ) o ]

on%0 pHeEDEGETRT T R
o~ AN 2 00KIKT/BGRTIPICANT )

092 AT RRNSTRITERRSEY Y

A0 SO=ROPRESRM] D516 e e )

[ LL 1% SEel, G T R
oues 31 TG L HUYPOH FIARTOP{) . o e onn o

LT 0E1u0. 878 e T — e——
o9t _DEzs0.2%8

LT} BEYIITS )

6135 Diisl./0:000 }

0100 i 2et. /O%2 " -

Lol 0i3e1. /0EY

el0? AMLY sullmz.usz JTI83CAIRT IRDE T

0103 1 _lud, 34

B104 - eh Ty s

0108 EXYs EBL ~D. )88

Si0e LB 1) Z,OweERL -

%34 ESILI~=1in 2,0%0(my

U104 L1 EDECLi«£BOUIIC{Y.0em0EE »1,01) N

a10% J(%“JEH N

2110 OIS I Y ] S

oAlg Eac.- THO5 +(1-261wDES )

01l2 ElVe £%L = G, 1405

0153 EEOL Lba 2, 0n0EB),

6114 ELif-lls 2.07SEMY

oils. 12 &ntsm- rmqmz GeepEy ~1.0) — L

[ S 10 Eel

BiLT eoen:- o.me.

alia FClite IDE{Li%Y ~0,008

Q119 17 ERD{Itn BOEL1IR{1-1)

3120 EQE{ 361929, 49

0121 EG gg_f__;n? %37 | e , )

2z APE. NE, u o0 To i -
0123 aﬁmnm GAva, DARYG, THE, NTR, WY, NTP, RION. DDEG, N$M,SWE, E,U
G13s AEARTLI0Y 7y WT; ANIOS.S5EY

012% NG WK

rLlt WGHTul .0

0127 REWIND 1d . —_—

0128 NTahT 3

0i2% 2 CONTINYE

0130 IF {NTAPE.ME,.2) GO TO %

013t HEAHLIY ¥ EAVG, OAVGy THE, MTwy, NTy NTP, KION, DDEG, Hsﬂls“r‘t E, W
Ry3F READLES § . wl, ANIOR,%H3

0133 . Himpygusxd cm e . —e o

LRR T ¥GHT 1.0

0i)5 REWINDG @

G138 HYcNTeL

013} 5 CONTINUE

0138 {F  (NTARZ.%E,0) GO TO K23
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FORTRAN IV G LEVEL 18 + MAIN DATE = 721268 08/31762
o139 NION= SGRT(S0*LG/AITG)
0140 = L]
014l CALL SORCE2INTP, EAVGy NTW, PM, FID}
0142 =
0143 DAVGIAL
0144 . = . T{EAYG)
0145 $F2=1,0
0l46 _LIF. SELnNTH/ ————— .
0147 SKH=SO%AL®ND®SF2/ LETY®SQRT(EAVG) ¥ T
0148 . _NSWmANSH 40,5
0145 IF (SN.GT.ANSWE NSWaSH +0.9% B
0150 =X2
0151 SWF=N5H/ SN
0152 . SEn - -
o153 SF1=§F2 -
0154 L1 5 S e e et e e .
0155 CALL SOURCE(NS,NTP}
0156 — IME=0,0
0157 ANTOS=NTON
0158 n a0, e — e e o
0159 122 CONTINUE
C GENERAJE_SQURCE PARTJCLES TO INJTIALJZE THE PROGRAM
0160 ANEAN-NION'O.333!3/DEN
olsl
0162 1o sonngrettl -ouocunu IKIVIALTIATION AND THE INITIAL PARAMETERSY, 771
0163 uulﬁu.._lu_um NICGNy NPy ALLEAYG
0164 71 FORMAT(® ', *ALTG --.514.e. INy ONION m 9 g ELa by 3K, THTP 3 T1Z,3X,
1'0CEN(EDY =%y EléafhedXs *EAYGe *,FElé,4,7)
0165 72 FORMAT(! a.sx.-ocuu-.13x.-nCEM-.13:.-ensncv-.11x.-1-.1¢x.-u-. 10%,”
’ 932)
Ol64 RT3 FORMATI® ? FlA b3y Fla.hy 3Ky FlA.S3X, S12. 8,3 Fl2.0y 3N El . 4]
0147 FAITEL{ 8,720 : rr—— e e e
oL&B RIP=RANIZ(O)
0169 . U3 S — R
C WITHIK THE GUTER | LOOP THE 3 TH PARTICLE WISTGRY
L GEAMETRILC BOUTAME ENTERING HERE
0170 TITT IF ({ECE1.LE0.0).ORLE(TNoGT.EQRL.5)) GO TD 9008
017l TCEN=ODEG/ETY . . . __
o017 7778 IF ([NIZN.GV.03.AND. {14GT.NTPI} TCENw DIZNINOIN#1)
o173 Uf 11 =l{1t=IUSN e —— .
01 74 LFGZ=0
0175 ——EIAG el
o176 IF (EL12.GY.EDLY ETAGLa~1,0
oLT? SQE= SPRT(ELL))
o178 OVA=EFSTCENSEMASS1%0, 5
0179 YZASQE*ETVRULL) ¢ DVA .
g::f VYS=E( TIRETVS(1,0-UlTIeUl 1 inETV
. —fICEN. SQATIVZIA®S2¢YYSISTCEN
ole2 NFLGx0
0183 900 1F LE(L).LE.0.Q) G0 TO. 900A
0184 IF {NFLG .EQ.0} GO TO 809
0185 505 SORTLELL

olaé

11
OVA»EFSTCENSENASSI®0, 5
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FORTRAN t¥ G LEVEL LH L HATN UETE » TILT6 OS7 %1702
oLe7 o . * DVR

LINT 80% OleVIA®TCEN

Q189 EREWs E(1) # EFSDL

0190 IF_(ENEW,LE.0.0) GO TO 9008

0191 SQEP=SORT (ENEW]

oln2 UNEN= SQESUCL)/FSQEP oDVAS2, /{SQEPSETV}

LK) ALT=RLDATETTTT

0194  ALZmALDALENEN) A

al1s5 ATl B7ALT + [.0FRL2 -
G198 ALD®2,00/ALL

olLet RIRANIITON ; -
0196 .. ALRwABS (ALOGER]T )}

0199 U= ALKFXLT

0200 1F_{NFLG.EQ.1) GO 7O

0201 tFIMODTT I EQ. DT uKTY!TS“T!T“"‘UCﬁt‘UcEN‘ETTT:rTTT”UTT1‘HTr11
0202 . DCOL2=ABSIALOGEL.~RI}I®ALD

0203 DYGTSOTOT +0COL+OCOLZ T
0204 ETOT=ETOT+E(S)

020% TF {NOPN.LY.2) GO YO 901

0206  TCEN2=TCEN L

n207 ) DCEN2WOCEN et s e
azoa EIO=E(L) e

0209 UTO= UtTI*TUSK - -

0210 . Zlga2tly

021t “TENWO=ENEW

0212 UNNO=UNEW o e -

02113 Dio=pZ Tt

0214 901 _NFLGs] o .

0215 %02 [F ~(DEEN/LT.OCOLYT GO Y& 958 e

021¢ _YCENSTCEN - DCOLSTCER/DCEN

0217 OIC%DZ®DLOL/NCEN

0218 E{1ImEL]) + EFWDIC ~

Q219 LU=t} +01C - )

0220 DCENw CCEWH =DLOL e

0221 RCOLNCOL+1 T

0222  JF_{MODINCOL,HC)LEQ. 0} RIP=RANIL{O)

0223 :F'inuncncaL.NC|.NE T RIP=l.0-RIP -

0224 CALL GOLPRO{I, TCEN, NTP, AIP, NUST, £9008, E9045)

0225 EFCEETTIALELD.0)4ARD{LFG2.EQ.L}) GO " TO 3J008

0226 G0 TO 500 ) .

02217 905 E{])=ENEW ’

0228 Utl)e UNEW .

022¢ Z{y= 1011 & ol

0230 IF ((2{f)aLE.Q 00, ORL(2Z(1).GY, D }) GO _TO 9008

023} JRINTLZCLIWDLIV) 61 ’

0232 1P 1J.GTad)  Jmi2 -

0z33 K= [NDEXE{E(I V)

0234 e I (X, GT, JEI KwJE

0235 [F IK3.EQ¢1t GO 1O 904

0236 ETaG2ni,0 .

0237 TF IE{11.GT.€01) ETAG2=~1,0

0238 1F {ETAGLPETAG21.GY.D2.0) GO _YO 904

0239

IF (ETAG2.GT.0.0) GO TO SCY
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FORTRAN 1V G LEVEL 10 ,  WAIN DAY = Til%e
0240 NUP=NUP+1

024} e - ESE(NUYPI=E(])

D242 . WT{T ImWTLI) /K

0263 . _ - WSE{NUPeWTIT)

0244 GO TO 904

0245 ___ 903 JF(CLFGE,EQel) ORe (NDEN. LY NOHRaN uol
n246 IF({LFG2+EQuLll)a un.(unpu.n?.zli' l%iiwﬁnal

RS . _HONaNDNs]

0248 IF (MOD{MON+K3}.NE,O) GO YO 9045

0249 L NTAI)eMTLI)=KY

0250 904 NEZ{K,J)is NEE(K,J) ¢ WTII} v
025l . EKZIKy JImEKE{K, JISECTIoWT{E)

0252 G04% IFI(LFG2+EQel)«Ofc (NDPN. LTe 211 GO TU 9000
0253 e LEG2m] —
azs4 E{I)=ElID

0255 vwgto Lo s
0256 Tt1)1«210

0251 . ICENTGENZ

0258 DCEN=DCEN2

0259 e D —_—
0260 ' ENEWWENKO

0261 UNEM=UNKG e e
0242 Dl=DL0

0263 _— IF f1USN.LT,02 GD 7O 900

Q264 G0 To 992

026% sNES+ _ —
0266 IF {E{I1aLT EDLY WTLZImWT{1)/N3

D247 LLE (T(11.GY.00 WYION=l,Q. . L
0268 WNES=NNES #WT{I}

0269 _ JESINES)=]

270 IF (E{1)sGTa0.0) ETEPSETEP+E([)euT(})

0271 9009 (= 1+ e - i L . -
0272 LFG2=0

0273 LFaNTP) GO TO_¥777.___ _. . .. ..
G274 IF {{I1GTaNTPI ANDs INTZN<GT201) NOIN= NOZN-1
D215 a)

0278 IF (INIZNaGYeDi +AND. {NINJEQ.O})} GO YO 7770
0277 NIZW=MNLIN #0.% . v e ememm oim »
0218 NW5S=KNES +0.8%

0279 _MASM=HNAS __#0.8 = . e . —— =

02490 WNAS=WNAS/KELC

0281 oS E = WK E/KELC

0282 NSEWaWNSE +0.5

0283 - DO 191 M=l JE | .o he e e
0284 00 191 N=loJ

g2as mEE(M) + EXZIM,NY = . .

0286 191 NE(M}= NE{M) + NEZ{M:N}

0287

0288 N3I=K3/J02

0289 CIF. L AN3.LTakl  HI=] ———

n290 NK3=KI-]

0291 sNK2 .

0292

IF (N3.GE.1) M3=N3

NN
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FORTRAN 1y G LEVEL 18 —HATN OETE = 72188~ OS/31707
0293 - o0 2% R=I,NUP
0294 _ KWIKDEXE{ESE{N))
0295 EEI"'QE'M-E%!'K'D + (=TI GESETNTOWSRIET —
0298 . __NE{KI=NE(K) *{K3I~LI9WSEL(N)
0297 27 TF INK3.GE.JZ1 Ti=df -
258 DO 21 Lsl,iZ
0299 HREZILTSNREZIL] + RISWRECHT
0300 21 EZLL)I=GZ(LY ¢ ESE{MINMISUSELN) '
0301 NKZaNK3 =-J71%N3 -
0302 ) 1P {NE3.LT.JZ)  [2mKK3
0303 CEER o
EY IF {MK3.6T.0) GO TO 22
0305 75 CONTTRUE
0306 (24 COMTINUE
0307 08 192 Hel, JI - T
0308 DO 1915 Nml,JE _
0309 WREZ (MI=NREZ(MT ¢ NEZIN Wi - T s
0210 1915 EZ{MIuER(M) +EXTIN,M}
o311 *192 CONTINUE
0312 . _NTPNaNTP#}IN-NES=NAS
0313 HTPW=D - R ek bee
0314 _ ETOLUD. O —
031% DO 14 Mwi,JE - T e e e
0316 —. ETOLs EYOL +EE{M)
anrT 14 NTPWsHTPW +NE{H)
0318 . EWTOLeETOL " ]
0319 NTPT=HTPN ToTEEERTTT v T s e T — s e
02320 . _DAVGO=_ DAVGEND o
0321 DAVS = DAVGO* 10100, ) *uHT VP T T e e
0322 o D5AVSED5AVEE DAYS
0323 DYAVSSDTAVS #DAVS
032% _ .. D1%Ge}.0/05AYS .
0325 ANTPO » [.Q/NTPW T T T T e
0328 . NSTP= NSTP + NYDW e0D.5
0327 NTPEaNTF5+ NTPH®DAVS TS o e s e
0328 L NTIPD=NTP .
0329 EWAVG=EMTOL®ANTPO
0330 ] _NSOwNS o .
0331 NSNO=RSO®HNZ +0, 5 T T T T T T e e e e s
0332 . HYEwNTPINIIN e e o e
0333 NTPPaNTP e
0334 y DAVG=DTOT®O, 5/NTP
VEYT] EAVGw ETOT/HTP
0336 _DEGADDEG/ETY e e _
0337 YHE=TME+DER S NI e e e
6338 . _.. JUSsTHS+DEG | 25 TRER ECTRINAYE AS

C IF SOURCE PARTICLES SO{NSi< NES THEN ELTMINATE AS MANY RESYOUE FARTICLES AV 1H
0339 - NTPSaNTPue NWS eNASH
03435 NTWENTPH 4.8 -
0361 . —.DLENL= ALDA! EAYG) e e C e
0342 aoss-mvcnnmsonn EAVEG) T

0343 . BFul,0

VU VO
Q344 IF  ([WNES#MNAS}.GT 0.0} AFs(UNTZR+SR)/




FORTRAN

0345
0348
0347
0343
0349
035¢
0351
0352
0353
0354
2385
Q356
0357
o358
0359
€350
n3sl
0362
N3463
2364
03Ls
0306
0367
0368
069
0370
0371
03712
0372
0374
0375
0376
0377
0378
0379
03ed
038l
0382
0303
0384
03405
038s
¢387
oxae
0389
0390
039}
0392
0393
8394
G395
D3se
0397
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v G LEVEL 18 WATH DATE » TI126

o%/31s02

SF2m1.0
e o LE_EAMINS NE,Q)  SE2=NTRS/ANIOS

ESAYGeG.0
32MNEeQeQl ESAVGn ETEP/WNES

o LELHWNES
EASAVG=0.0
F

SWEQaSWF
. _CN5S=CNSSe SHEDAVSOWGHT —

CSFLlw C5F1 #{ETEP+ETASIA0. SWNIZMI/THS
SEARLSFLeRISG/1S0%ED)

CSF2a CSF7 + SFEALAVS

_ IF_{f{MODENT;51,EQs00,AND, {MT.NEsQ})  SF3I=CSEUD]5G
WGHTwSFL/SF3
. SN=SQeDDEGESFI/ETY. .
15 {NYELOToe49201  ANSWR2

e e MSMANSH #0035 S —_ _——

LF (SHaGT.ANSHI NSW=SN +G.5
SHEuNSH/SN

NS»NSH*K2

NHEWOMNRET ¢0a. 8
u *+0.5 e
HEVLEaNSVLEe KYALUE®DAWS
= B > EYCP4DAYS

CETASWLETL S +ETARS®DAVS
h 3 sHNIZHEDAYS
CNESHCNES+RNESRDAVS
= * *

T CMRETACNME T+ MAMETSDAY S
CHEKC*CNEXCeUNEXCOUAYS

CESAVGRCESAYGH ESAVGAIDAVS
sCEASGECASAVORDAYS
CLOSS~ CLOSS+{NNIZN“HNES)®DAVS/{THS9SF3]
e WYLELSHEVLERDISG.

HSAVGACNSSSB18G 045
MNITAUGSCNSIZI®NISh +0,5

ANLZVGTHSII*DISG
e - ANSVOWCHNEERTSG e ———— e m
AETEP=CETEP/DTAVS
. AETAS=CEYAS/QTAYS . _.
1F (ANIZVG.HE.O} WVLEZ=(EOBAHSVG~AETEP~AETAS)/ANTIVG
LI N1 FE-1d

ANESaUNES/DTAVYS
.. - ATAYS.
AESAVGRCESEVGHDE 50
AEASG=CEASGeNISG .
ARMETwLNMEYSDISG
e MEXCAOCNEXCODNISG
ANS=ANES+ ANAS ~AMILIVG
o JAE _{ANSKLEL Q.00 ANSSsNSWSSWE. . L —
IF (WNIZN ,HE.O.0} KVALUEw {(SHWEOOMGHT-ETER- ETALISMNITN
- JE {ANI2VG.NE.D:  MVCu{ANSYEO-AEYER-AETAS)/ANEZVG . .
IF INS«GEs1} THS=D.0
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FORTRAN lv G LEVEL 18 HATN BDAYE = TILZG 05731700
0398 " NEVSRES*NAS
0399 _ .. CALL SOURCEINS,NTP}
0400 IF (NET,GV.01 CALL FILHOLIRTF,NES, RAZ) T
0401 90 _NI1ZNT=s NIZNT +NIZHW
0402 IF (NUP .GT.01 CALL SEPROC{NTF, K3} T
0403 IF {NDNR,GT,0)} CALL unmcmrp,m
0404 NAST= NAST #NM5
£ _INTRODUCE THE SDURCGE PARTICLES EOR THE NEXY CYCLE
¢ EVERY FIFTH CYCLE RENORMALIZE NION AND OUTPU H TED
C RENDRMALIZATION PROCESS OF NION
0405 ANSTP=1,0/R&TP - e
0406 — ANTPSaDSAYS/NTRS
0407 ﬂ?b‘w-nsw
0408 S D0 16 M=l,42
0409 "CNREZ(Hiw CNRELINI + NREZ(MI®DAVS -
0410 16 CEZ{M)I= CEZIM} + EZ(MI®DAYS —
0411 D0 18 H=l,JZ -
0412 - FNREZ (M} =NREZ(M)I®ANTPO
0413 18 EZ(K)= EZ{NI7 NREZ(W}
Ghik SUMNE=0, 0
0415 00 193 Nel,J€
04lé SUMNE® SUMNE + NE{M) _—
0617 TNEL{ M= TNE(K) + NE{M)/EDE(M) -
0418 193 ENE{MI=NE{MISANTPO/EDE (M)
0419 EAVI=O0,
0420 . .D0 1755 Mml, JE e
0421 EAV3« EGINMI®FNE{RISEDE{M] +EAV3 T
0422 1755 _CNE(HIo TNE{MISANSYP
0423 CNIONSCHUPDP®2.0®AIKT/SQRT (AKTOPI)
0424 ANION=D, 0
0425 ANIDZw0,0
0426 .. Do 20 Mal,JE
0427 ANT02= ANIOZ ¢ FML{EG(MN) (CNE(MY)®EDEIM} R
0428 ANION= ANION ¢ FMLIEGIM),FNE(M) }OEDE{M)
0429 ‘20 CONTINUE
04230 DNJON=AN[ON®CNIDN
0431 DHIO2=AN1G2*CNIOR
0432 _GJD=ALOSS e
0433 IF (ALOSS,LT.0.0) CJ6=0.D -
D434 . IF {ABS(CJD)46T2110.%50} CJD=110.¢80 =
0435 TNION=ABS[50+CJB}Y/DNTON -
0436 . o TN]D2«ABS{SO+CJDI/DNID2
0437 TNID2=5QRT (TNIDZ)
0438 TNION=SQRT { THION . e
0439 CNIQ2«CNIO2 & TNID2®DAVS T oTTemTTe
0640 _ANIDS=CNID2¢0155 R —
044) WF=l .0 - T T
0642 IF {ANES¢ANAS yNEy Qo) WFm{ANTIVG#ANSVS)/ {ANES#ANAS)
Gh43 {HOD(NT,NPM}, NE-OF GO TO 1fes
Ghdd umu-lums . e
0445 IF {{MFeGT,0.005),AND. (WF.LTs 200+)) NIONSAH]OSEWFRENSE
D446 1790 _CONT INUE . B

0447

DAVT =DAVGEND
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FORTRAN Iv G LEVEL 18 o MATN T DATE w Ti12& 08731 /02
0448 - T ALPHAWNNTZIN/ (NTPHSOAYY )
0449 e ANEAMSNIONSO, 33Y3I/0EN —
0450 1785 FORMAT(' G, *ANTON®S T (EL3, %, 3Ky *ONIONS FsEL s 4y 3%, FYNION®? sE13, 4730y
L _K'ALPHAR® €120 534Xs P LEAKu €130k ) - ,,
06451 WRITE(&,1T65) ANIGN: ONIOZ, TKIOZ2, ALPHA, ALOSS
0452 . ... p s+ NDPH
0453 170 FORMATL' L' y*GASt HE? 42Ky SOURCE EMERGY1® (FB, 03Ky 'PRESSURE; T rFAs 0y

LJIQB,&!.L?E_L.‘.SJ-AQIE].CKNESS*L:FMIN c"'[. Dll':Fﬁ.lL' CN.Q‘X|'DEL_I___
A=t (EL12. 543N #PROCwY (1247 )

0454 C_HRITEL G100} NT, TME, HNGeNSW .

D455 1BD FORMATI® *,VNUMBER Gr TIME CYCLES=Y,1643X4*TINE w0, E12+54' SELV,
13X, SGEMERATED SOURCE PART wf, [5,3X, *WGTED # DF SDURCE PART,=',
115 )

0456 . SNRITEL621805]) DAYY, OCENI.EAYG:EWAYG, EAVS e

0457 " 1805 FORKAT(! *,*0AVG ='4FLZ.543Xs 'OCEN w9,F12,5,3X, VOVERALL EAVGHf',

o 1ElQa3s3Ket MGYED EAVGeY Fl0.343Xy 'EAVG CHECKw!,F10.5,/1 e

G458 WRITEL&, 28110

N ' : BUTION? 424y "FLUX DENSTTY? 44X, ? AVERAGE
1E ENERGY 13Xy VCUNULATED # DISTRP 3K, 'ENERGY I[NTERVAL® 42Xy 'CUN FLUX

cimmon KDEN® £ 6¥ " SDEN-DEVIATIOQN' /) I —

04560 CESUR=0,0

0461 LSRR 281 M), B N e

0462 CESUMSCESUM + CNE(MIMEDE(M)

0463 . I (NE(HILGTa0 QEAVGWEGIM)~EE{M]/NEIMY

0464 IF (NECMJsLE.B} DEAYGR0.O

04695 L AE _INELMILEQe0f _DHAVGeQ, e e e e+ e

(TYYS FNOVaGNE INI~FNE[ M)

as 67 . MFEoSQRTLEGIMLM*ETY | - ——

0448 FLX)2FNE{ X} OVFE

0469 FLX2SCNE LN} #VEE

0470 IF {NE{MI.EQ.D) GO FTO 281

D&l o JIELUAMR R L e AND: LDEAVG GTaQul) ba Ry { IMs EQe JE)s AND, L DEAVG LY D0V}
%1 DNAVGa~DEAYGSFNE (M) 0, 5/EDE(M) )

06712 cwdE (SNEAYGa LT Cu0ia ANDR L (M3 ) o LERJEDS ONAYGR=DEAVGHE FNE (M) ) =FNE(M
KiF/{EGINe1I~EGIM}} ‘

473 IE ((OEANRAGT a0 Fa ANDa (M GTa k1) OMAYGROEAVG@(ENE(MI~FHESM-]113/(EGL
XMI=EGEM=1]}}

B4 T4 281 MRITELSLAR2L MoBNELMY oFLXLLECINIaCRE(MI EQEIRIZFLXZ o ONAVG

0478 182 FORMATI® "y [3(EL2a 55N EL2ads 5Ky F12.8 18Ky E12.%,6Ky Fl2o814%,E12
NaBagXsEl2a 4} e e e e e e

Ok T8 DETWDDEG/ETY

0671, e MBLTEL G 1B2) _NYPE, NSTPN,NYPW sDEY, DAVGO, NCOL -

0678 183 FORMATI(Y 1,//¢3%,'TOTAL & DF FARTICLES PROCESSED w¥. 15,5, 'CUMULAT

—~1EC 8 OF PARTICLES »*311043%s *HGTED YOIL 8 OF PARTICLESSY , F12, 3,77,
Xt NEW DTnf,EL2,544X, 10LD DAYG=* yFLR2.514K, '8 OF COLLISTONSw',15%,//)

0479 . MRITECA18TL .

. 048Q 187 FORMATI! 7 41Xy 'IONE NUMBERY , 5i.:ii@é§née"éﬁei&?i}iii7nuiiii“o'
i RATIVE ® QENIZ1LL3Ke 'CUNUs AVG ENERGY (o 3X,
17ZONE # DENSITY® ¢4
0481 DO 282 Mwls J2
0482 ANI®CNREZ (M) ®ANSTPODI5G
0483 1351}

PLYsLEXIMYZLMREZINM, . PO
04b4 282 WRITE(S,184) M, EZ1MIs NREZ(H), ANEy PCL,PNREZ(M}



FORTAAN IV G LEVEL 17 " NATN TTUTTTTTBAYE - T212% CONITRT
04385 T 54 FORANTLT T,
__1F12.5) __
0486 WRITELS 185} NION,WNUIN,NTIN, ANTIVG,uNES; N!S-AHES“HI!’HI! T
NANAS, NTPy Xl, X2, WE,BF _
0487 185 FORMAT('D1; TNUMAEN BF TPOSTTIVE TOR=T BT 7T RYYRY ™
110NS OCCUIFDu‘.FQ.!.Sl.'ACTUAL l-'nlinli"CUNULAIIV! Avc-- +F10. 3,
X//.' @
X AVGE!4F9.2,//4 4 OF Assonpsn Pautlc-'.tlz.s.:x.-ACVUAL #e? , 15,3X
Ky VCUNULATIVE AVG®Y (F9.2,7/, [4 /498
XE =V oI5, //s" KLm'y B2y 3X4'K2u0,12y  4Xy' BALANCE  FACYOR WFs',
XFL04 83X TBF28%, F10.5,7) o T "
0488 WRITE(5,188) EDls NPMs NDy KELE
0489 188
© Ke'TH CYCLE CHANGE N#¥2//¢' TIME INTERVAL HULTIPLY FACTOI-'.F¢-#.
X3X, YELASTIC XSEC /# BY!, 12,7}
0490  NORwNDN~HON/K3
0491 MRITE(A+1B&1 NSO: NSWy ANSVG NORZWNSEWNMET, ANNET ,WNEXC s AREXC o NUP s
AMGHT
0492 T188 FORMATIY ¥, ¥ SOURGCE PARTILLES GENERATED OLD =¥, [18:77¢
. 1" SOURCE PARTICLES (MEIGHTED) N THE NEM CYCLE w®,118,3%s *CUMULAT
XIVE AVGe',F10.3,//
L1yt 8 OF PARYICLES KILLED OFF IN RR Pancu-.llu.li.
1' & DF SUPER ELASTIC COLLISTON®V F10.4,
' 8 QF exc:rat:uns TD MEYA STABLE LEVELw?
x.ﬁlo %y 3Xy 'CUMULATIVE AVGw'y F9, 3y
i f1gr 8 oa_ggclrnrlons TO OTHER LEVELSat,F10,4,
X4%, 'CUMULATIVE nvc--.rq.z.fl. T8 OF PARTTCLES CROSS OVER YO HIGH ™~
XENERGY REGION NUP=®, [5y4Xy 'OVERALL WTw! ,El2.&y/) o
0493 WRITE(6+195F EF, EDP¢ POPO ,SF1y SF2y S5F3 —
0494 )95 FORMAY (! E-FIELDa®, F9,2,'V/CH', 4X,'E/P=?,F9.2,4X,'P/PO =¢,FT7,1,
XIKy *SFLe?, ELZ2e413Xy 'SF2uV ) Cl2a%3Ky TSF3mi, E12,447)
0495 WRITE(6+170) S0 WVC,SWFO,MVALUE,WVLEL, WVLE2,ESAVGs AESAYG,EASAVG,
XAEASG
0496 170 FORMAT(' SOURCE RATE =',E11.3,% PER SEC',4X,'W~VALUE{LOCAL }w?,
XF10:3, 3X;SOURCE RED.FACTw? (E1l3ukyg//y* W-VALUEm',
_XF10.3,4X,'CUM AVG_NY1w¢,F9,3,3X, CUM AVG WV2m?,F9.3,
1 //.- AVERAGE ENERGY GF ESCAPED PARTICLESS ' 4F12,8,3X, TCUMGLAY
_RIYE_AVG=*yFll,4s//,* AVERAGE ENERGY DOF ABSORPED PARTICLESW®,F12.3,
X3X, 'CUHULATIVE AVGeV  F11.4,/7 }
0497 CKFNE=SUMNESANTPO -
04986 WRITE(6,I89FCKFNE, CESUM, TNION, TNIOZ
0499 . 189 FORMAY(® ?,VTHE SN 8 CHECK ®9,F12.4,3X,"'THE CN # CHECK=',F12.4,//,
1" CALCULATED N+ USE F=° 4El4e643Xy'CALCy N* USE CN =Y ,Eld:8,
XTIF_CNent,El4,6,//) -
0500 IF ((MODINT,51«NEAO}+OR: {MODINT,10).EQs00F GO 1O 3
0501 WRITE(9) EAVG, n@gg; TMEy NTM, NT, HTP, NION,DDEG, NSW,SWFe E; U
6502 WRITE(S) 2 WT JANTGE, GFH
0503 _ _ENOFILE o
0504 REWIND 9
0505 CONTINVE . . __ e e
osog IF {HOD(NT, 10} .NE.O) GD TO 4 T
050 WRITE(1Q)} EAYG, QAVG, TME, NVW, NT, NYP, NIOM, DDEG, NSW,SWF, E. U
0508 TWRITE(LO) 1y WY  ANIDS, SF3




FORTRAN IV G LEVEL 18 RAIN DATE = 72128 as/3y702
osng ENDFILE 10

0510

0511 4 CONTINUE

0512 -

0513 NSTPwO .
0514 .. .. L

a515 D5AVSa0,0

0516 - =

0517 NIINT=0

0518 I M3YLE=D, 0

0519 CN511=0.0

0%20. CN5S=0,0

0521 CNMET=0,.0

0522 CHEXC=0.0

0523 . CESAVGu0.0

0524 - =0.0

052% CSF2=0.0

0526 . CLOsSSs

0527 CNIO2=0, 0

0528 CSFE1=0,D

0529 00 54 M=l NI

0330 ... 0.0

053l 54 CEZ(M)=0,0

ns32 on . 55  Mw} . dE

0333 TNE{MI=0,

05234 . =0,0

0533 CNES=0.0

083 —— al.0

0337 OTAVSw0.0

05238 - LEIEP=0,

0539 CETAS=0. 0

03540 —_ J0_ss4é
0541 6666 CONTINUE

0542 - NYs NY ¢ )

0543 D0 56 M=l,300
Q544 DIZNIMISD.O

0545 IES(M}wD

0546 IRR{M] =0

0547 56 IAS{M}=0

0544 =250

0549 WSE(N)=0, 0

0550 . . . S1L ESE(NI=Q.0Q

058k I=]

€. REINIT DUANTITIES

0552 D0 %52 Mwl, JE

0553 FE(MIn(, —
0554 $2 NEiM}= 0,0

0558 _ _ .. 053 Mulal?

0556 NREZ(M)I= Q.0

05857 e » -
0558 DD %3 N=i,JE

0559 e EXIEN M} m

0540 53 NEZINsMi=0.0
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FORTRAN Iy G LEVEL 1N T RAIN UATE & TIIZ8 LA T8 b ¥t
(LT A NTIN=U

0562 NOINnQ

0563 LT

0% 64 . _NES@O

0563 NSE=C

0566 COL =0

0547 NAS=0

c564 ___HASMlwo

0569 Thiorsd.0

0510 N NMET =g

08T} NEXL =D

0372 XNES=0, 0

0573 WRAS 0. ¥

0574 . _WNEXC=0.0

0875 WHITRn0. G

057 _WHKETwO,0 .
0577 WNSE®0.0 o
os78 EYASm0 .0

us79 ETEP=0 4}

0560 . _.EIcTep,0 o

0ssl N« -
0582 NUP=D .
VEY}] NDN=O "
0584 NDN# #0

OQ%RS TNTV=IHIV: L1OU

0584 WJEALL  ANMINZUEMIVE .
0887 WRITE(5: T2 -
0503 ... AF IMT.LE,NIC} 60 _TO_ 7777 _
0549 ?9%% SYQP -
o590 CEBUG _ SUACHK

05%1

EHD



FORTRAN Iv G LEVEL [¥ {ROEVE TATE w TZIZ%
gool T FORCYTON  YNBEXE(E}

too2 COMMOM /AREA®/ CONST,DEL2y ELT,1E, DIk, Did, D13 ,DELI
0003 1F (E+LT,0.08F GO TO L1

0004 . 3F 1E.0T,158.1338 } GO _To 13

00as 12 TNDEXE= S+(ALOGICI®CONST +4a OFZ5712

onas _ RETURN

nooT 11 IHDEKE=L + E*(3 8L

2048 L RETURN . _

0009 13 TNDEXE=3& + (ALOG(EISCORGT=T. 00%T8GIE —

golo RETURNM

oot END

138

e
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FORTHAN |4 6 LEYFL 18 SORLE2 DATE o 12128 A TETV Y
w1 SUBKDUTINE SNRTE2{NSO, EAVG, NTMPM, FIM
ouy? FLAL  NI{SS)FINIS0Y WI(95)
Nnea COMMIN )y E{SIC1s 219100 ), UISIP0) o TASISOG o TARS GBS0 4 NRE JES{AST]
LymTLS100) «SWF )
Juda COMMIN JAREA2/ CLoMUDLEEFIS)SF ANEAM POPC P bl yNIUN G JF cJToNASNHT,
18FW s AKT. ATKT 4AML LARC L EDL POMUD, PO264X1s &2y K1Y, WN2LED?,CNY
0% COMMUN FA57 EGL9% by EDLISS), EAD(SS)
A Fulle)= £XP[-E*AIRTieSOMTIE} wANM)
EE Fuz{riwAadrf
WRLY fRY(FIsEXPL=+vAIKTISSUAT(E) =AWLL
reag FEAL  Myn, NIOM
Colu 404 FURMATIY ¥ FL2.6.3Xy [¥y 3Ny ELl2,4) 2Ky FL2 012X, F12.0,30,812 4)
ro1l ANE FLHMATLY ', 001wt {3, 3X,PEDICF9,. 3, A, VNEON Y, [ K, 9K, L0,

15i8,3%,1k2e 'y TR/ 74" INITLAL DISTRIBHTION® /7" B OF PTSY, TR INOLX
1P 5%) Yo DENSITY® caXy PAVG ENERGY ! p SR VORL~E " g Xy PMETGHT o /)

cr12 Gh FORMAT(Y 7 ONS1at I8, 3Ry "NS2u,T8p30y " HEDw? 3 [5¢B% INTHE?,15,1X,
RINTWICALC)I=Y 4 ]9 /7)

(SRS AT FORMATOY EavGet, F12.%, 3K, ‘AGHTFD EAVGW',F12.5,//7}

6oie AAs? OwPMCSOQRT{PN/DLII¢ERP(~PH)

QuiLs JIsINREXCLENL=0.5)

Crle J2u 10l

vul? [$ELL D)

Y] WATTE (-, &%) 4l ENDP50, KYo K2

ontg 10 15" [e)led1

Qoz0 PNE sFTO(II=EDE(I Y sNTw/K]

on 21 NID§=DRT

w2 witil=1.0

023 IF (FINLTN.LE,C.™N) GC TR 112

04 1F {ONL.GT 2200 NIL11«280

wias TF 10%.0T.200.) wIUIbaDNLZ200.

] IF iONLLLT 220 NItTI=12

o027 FOINNTLLT. 123 dltfjabNL /120

goezs 112 WAlTE(oeb%) NEL1De 1y FIDLIS,EGES )y EOELEYRECK)

ag2s 127 ISUMmISURE NI(1Y

0020 $5184x0

ocal 00 20 I=J2, 4F

ooz ONL  =FiD{TI*FDELT 1 oNTE=L2

G033 Nitl)=Onl

or 34 Witltst.n

0035 IF {FI0D(lt.Le.D.00 "G TO 202

0054 IF (DN, GT. 27 NE{Ti=20R

0037 IF {DNT.GY,200.) WI{Il=DMI/200,

o638 IF ADNTLLTe12) NI{])el2

0clg IF {DNJ.LT. 120 wllljeDNT/L2.0

004t 202 WRITE{LOOAE NILTYs 1y FID(E}cEGtT),y FOFLES, WllY)

ac4l 277 JSUNs JSUH + NELI1)

0042 NSUH= | SUMS SSUK

0043 NTH2= [ BN KL #JSURTUNZ +Q. 8

0044 MATTE(b 60T TEUA, JSUA, NSUM, NTH, NTME

0045 NTWeNTHZ

0046 {E=l

0caT . EAGeN. 0

onse DG WO §=i, JE
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FORTRAN [V § LFVEL

N04%
gusc
0os1

0052
IV
0054
orss
0056
o057
QCS5R
00%9
Cngr
aCel
0042
gCel
0044
0065
Gneé
+]e1.¥4
0068
0069
0070
ncTl
ooT2
0073
0074
0075
oe7é
Qo7
ca7Ts
0019
0080
oc8l
0c8s2
0083
+[o].L]
o0as
008é
coev
00838
0089
0090
0091
0092
0093
009%
0095
0a9éa
0097
0098
0099

n
360

400

101

102

103

104

103

140

1d SNRCE2 DATE = 72126 05731702

IF (NI{1).LT.1) GO YO 1300
JI=MI(T) +]E =1
no 3ol J=IlE, JI, 2
RIaRAN3Z(N)
R2wl,0=-R1T
E{Jin EAD{I) ¢ EDE(]I*R]
EtJd¢li= FAD{l) + EFNE(II%R2
WI{J)wh[(])
wTtJeliawi(l)
EAG =EAG + E(J) +E{Jsl}
TFLIMODCC ST =TF 421 EQeOls ANDu{J4GELd 1)) EAGaFAG=E{Jel)
CONTINUE
TE=fE#NI(IY
CONT INUE
NSN=ASUM
EAVG=EAG/NSO
12=N5N
ETWmd,0
00 400 [=]l,NSO
IF tE(I}.LE«EOL) HT{I)mKl *WT(])}
1F (ELT).GT.EDL] WT{YIwWN2®WT{])
IF (ELI)eLELD.C) E(I)mElLl=]1)
FTH=sETW + E{]I}eWTL])
CUNTINUE
EWAVGSETW/NTH2
WAITE(6+60T) EAVGe EWAVG
QD2Z=De0, 25
I=]
RIRAN32{0)
RUsRANIZIO)
1{t)=D*RZ
Ulll=2,0%RY =1,0
Is I+ }
L{I)=D*R}
Ullisl, 0= 2,0%RU
I= L +1 . . e ——
I(il=0*{1.0~R21)
Utll= 2.0%R2~1.N
I= 1 #}
L{1)eD*{1,0-RL}
U{l}= 1.-2,%RZ
1> I+ L . e
TFill2 =<1=3),.,GE«9} GO YO 101
IF {I2.47,1) GO TO 105
RZ=RAM3IZ{OD)
RU=RAN3ZIO)
IF{{12 ~J),EQ.2) GO TO 102

AELLI2 =Ld.EQedr. GO .TD 103 _

IF[$12 ~11.EQeO0} GO TO 104
RETURN
END



1h1

: FORTRAN IV 6 LEVEL 18 SOURCE DATE = 72126 05731702
g Brny SUBROUTIHE SOURCE(NS,NTP) )
0002 COMMON D, E(5100), Z2(51001, U{5L00) ,IAS{300), IRR{BS0) ,NRR,IES(AOO)
- XeMT{5160},58F
v gon3 COMMOM /AREA2/ CleMUDEIVELS,5F)ANEAM,PDPO+?1,E0, NION, JE, J2:4ASW],
- LNSEW AKT, ATKT +AML JEMCL,EDL,POMUO, PD26+K1l, K&, K3, WM2,ED2,ED}
] 004 KEAL MU, NION .
y C SOURCE PARTICLE PARAMETERS GENERATING PROCEOURE
i € 1t: YHE INITIAL INDEX VALUE FOR THE SOURCE PARTICLE
o ooos 1aNTPe]
3 coas DO 100 K=}, NS, 2
- ooay E(11=EQ
-4 o8 RZaRANIZ(O)
' GooY RU=RAN3Z(C)
= 0Ci0 Z(1)=peR1
-4 0011 ULD ) =RUSRU~1. 0
L otz WT{I1=WN2/SHF
. ool3 IF  {{NS-K).LE.J} GO TO 100
o Gol4 EL1+])mEC
. 0015 I{1el)m AZ*D
. ools Uilel)m=ut i)
oc17 WT{Ie1l)unN2/SHF
i aols 1142
! 0c1e 190 CONTINUE
L ooz0 NTPeNTR4NS
0021 105 RETURH
0022 END

-

R S R P S

-




FORT4AN IV G LEVEL

18 MAIN

DATE = 72124

05/31/92

1he

¢ WHENEVER THERE ARE MORE HOLES THAN SUURCE PARTICLES, FILL TN THE EXTRA HOLES W
C WITH PARTICLES AT THE END .

onol
0Goe

oco3
0004
005
000F
a0o7
ooQl
6009
o010
oo1t 100
aol2
0013 - 105
GCl4
001s
0016
Qol7
gcie
00]9
go20
0021 £l
Q022
0g23 200
0024

SUBROUTINE FILHOL{NTP, NES, NASY

COMMON D, E{5100),2(5100)s UCS100} +IAS{500}s IRRIBS0)NRR,TES{L00}

XeWT{S5I00 ) SWF
KeNTP

IF (NES.LE.O} GO TO
DO 100 I=1, NES
J=1ES{ii

Eld}= E{K}

2{dy= 2(x}

uidis UKl

WTEJ =WTIK)

Kek=1

NTP=NTP=NES

IF {NAS,LE.C) RETURN
KaNTP

DO 300 [«1,NAS
Jalas{l)
E(J)=E{K]

AR ETAYY

Ui dhauix)
WTCJIsWTIK}
MaKkel
KTPuMNTP=NAS
RETURN

END



e L=~

= A= T A

o E AT RN e T T .

FOR TRAN

0001
ocoz

4003
0004
0005
anne
0007
0008
0co9
oo1ce
onit
goiz
0013
0014
0015
0016
Qo017
ootn

143

1V G LEVEL 18 RAPROC DAYTE » 7212¢& 05/731/02
SURBROUTINE RRPAUCINTP,K3) - oo T T
COMMON Dy E(51001,243100) UIS10G) LIASI500), [AR{AS0),NRR,1IES{ 600
XeWT(5100),SWF
COMMON /A&/ ESE(S0) 4 NUP 4NONR,NON, WSE{SC}
NR=NDNR
KeNTP
IF (K3,LE.1} RETURAN
100 CONTINUE
talRRINR}
ELLI=ELR)
Uil bautr)
Z{I)=Z(K)
WYL b WT XKD
KeK=1
200 NitaNA=1
IF  {NR.GT.0) GO YO 100
NTP=K+1
309 RETURN
END

-t ssmas ow - ‘-

T —————, -
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FORTRAN [V G LEVEL 18 ALDA o DATE = 72126 05731702
noct FUNCTION ALDALE)Y - TR T
6062 COMMON /AREA2/Z c1.nuo.sl.{-ls.SF.mEAn.poPo.Pl.eo.umu.JE.Jz.msut.
INSEW 1AKTy AIKT JAM1 ¢AMCL,EDL,POMUO, PD264KLls K2, K3, WN2,ED2,EDA
00ca COMMON /AREA3/ XSEL,XELCXRCB)XMET ) XEXC s XEONsXTOL KELC
D004 REAL MU0, NIDN
00ns WELC=1,0/KELC 2m e
0006 IF (E.LE 5,1 XELC«2%,0%PDFQ - o e
0007 [F({E.OTo52 ), ANDs{EoLE1948)! XELCw23,04PDPOSSQRT{S. /E}
0004 IF {E.GT.19.8) XELCHEXP(=0.02¢E)%16, T6*POT)
0009 XELCaXELC*WELC ) o
0010 IF (E.LE.EDP3 )} GO TO %001 .
ocil 4001 AEl= 0,25 #(E_ - 19.80)%82
0012 XMET= 0. 1094 (E =19 80174 0.D3T1™ ¢ T
cni3 , XME T=XME T2 PDPO
0014 El9s E = 21.4
0015 AE2= 1850, ¢ E19%%2 A
0014 KEXC= 68, A0#E)9%PDPO/AE2
ooi7 IF (E.LTu21,6} XEXC=0,0 _ _ _
ooie E24= E = E1” T T o
: 0019 AE3a 4900, ¢ E24%%2 _
S 0020 XION= 172,%E24/AE3 -
gt 0021 KION=X10N*PDPO .
: ng22 IF (E.LTe24e%6) XION=0.0
0023 _ATOL» XMET +XEXC +XION #XELC
0024 XRCA=0.0 .
0025 XSEL=0.0 )
0026 G0  TO 6001
0027 5001 BEl=0,250% {E=19.8)0s2 P
0028 XSELw0,109#(19.8 ~E  )/BE1
0029 XSEL=XSEL*POPOSANEAM_
Q030 " XRCB=PDMUD*NION/SQRT{E)
0031 XIONw0,0 B
, 0032 XEXCwD.0
g 0033 _ XMEY=D,0
o 0034 XTOL= XSEL +XELC +XRCB
. 0035 . ._6001 ALDA=},0/X¥OL
0034 RETURN
0037 B -
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FORTRAN 1V G LEVEL 18 LOLPRO DAYE = 72126 N8/31702
000y SUBRDUTINE  COLPRO{L, DUEN, NYFT AT, NUSY; &y o) °
aooz , COMHON Uy E(5100),2{51007y Q{51001 [llSiSOOhIﬂﬂiﬂgohﬂl!uHESl&DGi
XeWT{S1CN} 4 SHF
G003 COMMON FAREAL/ NIZN, NOINy NASy- DIZM(BOO)NSE, HHET, NEXC, ETaS
KWNMET, WNEX(C, WNIINy ELSoHMAS ,KNSE
N004 COMMON /AREA2/ CLyMUOLEL4ETIS SFiANEAM PDPO-?I;E‘MN!ON;JE:JL HASWL,
LNSEW (AKT, AIKT ,AMI vﬂ“éinfé 0 POZ6eK1s M2y KS¢ HNE.'EG?.,ED?
0005 COMMON 7AREA3/ 'SEL1KELCulRCBoKHET'IEXCuK!ONQK?OL'KELC
0006 COMMON / A&/ ESE.50) NUP L HONR L HON, HSE(50)
0007 DIMENSION 2X(4&)
Qcos FH"lEllEKP(-*E*MK‘ll"SQRT(Ei*lMCl
0009 REAL MyOs NION L
£ DECIDE WHICK KiND OF CoLtLislON TR e
ooto XT1 =ALDALE(T}) ‘ o
on1l IF fE(II.LE.EB3 } GO YO =000
C, ENERGY REGION 1 19.0fY TO 1 KEV
0012 000 PMETH AMETY XTI
o012 PEXCu XEXUL*XT1 . s v —- —
ool e PEON= XTONSXTI S
0015 PELL=XELCXKT!
0016 PXtiis PEXC
0017 PAIY= PEXC ¢PHET . i}
0018 PX{3)= PX(2]1 +PION
0019 teny o
6020 B0 45 [Awl,2 - -
0ozl 45 IF(RIP,GT.PRIIXI} IPaiXel . .
G022 GO TO {A015,4013,4017,4011), IP
6323 4011 R1*RAN3Z{O} L ammam e em e e e e
0024 Yily= 2,0%R) =1,0
0025 RETURM ___

¢ IMELASTIC COLLISTION PROCESS EXCTIVE TO METH STABLE STATE
C EXCITAYIOM TO METASTARLE LEVEL

0026 4013 WNMET= WHMET +mT{{})
o227 E{J)= E{L) ~ 19,86 - evemun
0028 IF (E(D).LE.0.8) RETURNL
0029 - o NUETmNMETY]
0030 RIl= RAN3Z{O}
003t o NGLYL = 8L #RIL « 1.0 .. ——
0032 RETURH
C EXCEVION TO OTHER LEVELS e et e 1 o e e e
¢033 4015 WNEXC =WNEXC ouT(I)
003 . . .. Eljde E(J) =2]1,40
4035 1F (E{T3.LE.C.00 RETURNY
0036 .. . . NEXCWREXCHL . . . . . ..
0637 RIls RANBZ(OV
0038 . . _ _ . A]p = RIL #REE = 1.0 |
0039 RETURN
ream s A QLRI TLON PROCESS  PROPUCE SECONDRY ELECYIO)
c040 4017 HMTZNa WNIIN® WT(1§ 3
TS e o BA L) EL2) - EX
2042 T IF (EC1heLE.0.G) RETURNY
A0&3 NIZM=MiZNe) .

o04s NOZN=NDZN  +L



FORTRAN

0%43
0044
0C47
0048
0049
aosn
005}
Q052
0053
0054
[Ha). 3
0058
0Cs7
0058
0059
a060

¢asl
0062
0063
00 6%
0065
Q06
0067
gosR
0049

0070
0071
0472
o0vs
0074
H07%
0076

Q077

0078
0079
G060
o081
0082

083
0084
-00a8
0086
0BT .

0090

iv G LEVEL

C IONIZATION PRODUCED PARTICLES ALRAYS PUT T0 YHE END OF RESTOUES

018

146

18 COLPRO DATE = T212¢ as/3t/02

OLIN{NOZN)= DCEN P

RI=RANIZ{(C)

Ul )=RI+R]=1,0 e

NNTP =NTP +NIZN '

E(NNTPL= E{1)*0.1 e e ——— ot e bt e = e e
LINNTP)=Z{(1)

U{NNTPje=U(]}

E{I)= E{L)®0.9

WTINNTR)= WTLL) . L.

IF {(E(NNTP) eGTEDL)oORa (LETTI®LAILICET JLT.EDI}) GO TO #0108
NON=NDN+1
NONR®NDNR+1
AT{NNTP)sWT{1)¥K3
IRRINONR)Y=NTP+NTIN
CONT THUE

RETURN

L ENERGY REGION. 2 LOW ENRRGY RANGE DOUN_TO TMERMAL REGION |

5000

55

PELC* XKELCYXTI

PSEL= XSEL®XTI

PRCE= XRCU®XT!

PX{l}= PRCB

PX{2)= PSEL +PRCH

115 v —— . e — C—
DO 55 IXwl,2

FFIRIPGT.PRUIXID  _IPeixel . . _ .
GO TO l5013¢5015t5011lnlﬁ

C ELASTIC COLLISIQN PROCESS. i . am

%011

50115

. Re. .
FRL=FR3{EL)

IF {ELS.LE.0s0) GO 7TO 50123
IE.. E(10.GT2. 510 GG 50 50124
RESRAN3Z(O}

R2=RANITLQ)
EIIEDZ:RE

(343

FRE=FMILER)

. JE..(R2.LE.ERL)_R5muR2

5012
.

—GU...
ENN=RS*ED2

IF (RE,LE.FR2) RSeRE

TF  ((RE4LEsFR2).ORe (R2,LE.FRI1) GO 1O 8A12

"0a0 . .
R1mRAN3LZ(O)
= L -

T UMREQRT( (1, ~U1SR 2R (1,0l 1882 })

3 SR [ P=

T COSSTaULSUCL) +5SIGNIUM,US)
] [ )

- A - . »

Ell)w» E{1) =DELE
Ui =il

“so12%

PFl ELS.LE«O.OF U(1)m 2,0%RANIZIOF =10

"7C RECOMBINATION PROCESS
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FOATRAN 1V G LEVEL 18 COLPRO DATE = 72126 05/31/02
0094 5013 NASwNAS+I Tommmmme— e e e
0095 IAS(NAS}u]
0C96 WNAS® WNASHWTLI)

0097 If (E{T1.6Ts0.0) ETASsETASSECIISNT(I)
(o] RETURN2

C SUPERELASTIC COLLISION PROCESS _
0099 5018 E(1)3 E(I] ¢ EIS
0100 WNSEWWNSE #WT(T}
0101 NSEwNSE+}
o1c2 RP= RAN3Z(O)

c1e3 UlTis RP $RP =1.0
0104 RETURN

0105 END ~



FORTHAN Tv v LEVEL

148

n MALN DATE = T2123% C1/728/729

C MASTEP PMUGPAM UF MANTE CARLO STMULATION OF NONLINEAR ALPHA PLASMAS (ALPHA o128
T L YTEL®S INMICED PLASMA FLECTRON ERERGY O1STYAIAUTIAN sTusy -
£ DEFINITIONS AND TERMINOLOGY
£ 0t DIAMETER UF THE CYLINDER THE LENGTM OF THE FINITE REGION
G ETINITIAL ENERPGY OF THE SOURCE: PARTICLES STINS)z SOURCF RATE
C JLiTTal NUMBER OF ZONES  JE: TOTAL NUMBER OF ENERGY RANGES
C _IAS3 mA?AY Fuk STORING THE INDEX DF ABSORPED 'PARTICLES NASE THE ND. OF THEW
TETIRT T DISTANCE TO ROUNORY "DCOLS DISTANCE T ColLISTON™ SEENT OISTANCE YO CENSUS
C 37: IUNE INTERVAL
C AARAYS E, Z. 4 STORING ENERGY, DISTANCE, AND DIRECYION OF PARYICLES
£ NTP: TITAL NUMHER OF PARTICLES TO RE PROCESSED FACH CYCLF
L NTi TiTAL MUMBER OF TIME CYCLES
C M3! MIMRFR OF SOURCE PARTICLES PEM UNIY TIMZeDISTANCE UR SUURCE RATE
TTONTIHT NUMBER OF YONTZATION PROCESS OCCURFED £ACH TINME CYCLE
argy HEAL NEI551y NEZt 55,100 FZ01114DX(3) 4550850, CEX(L1},EKZ(%S
19100 JFICI6U ¢NRFZLLIL)LEZZ(LL),NTOW
00062 , DIMENSTON  FNEUES)y FNREZ{IL)s NRZI{L1),CNE(56)}, CNREZ{11),TNELSS)
P CORSON U, F{bzoc1.z(51003, UL%100) 14505000, IRR(A501\NRP,1ES{600)
e, XA WILS1001, SHF L o _
rrAL COMMAN /ARFALZ NTIN, NOEZN, NAS, DIZNTEQC | NSE, NMET, NEXC, E“AS
XwNMET . WNEXC, WNIZN, ELS,WNAS WNSE _
DAQR COMAON FAREA2/ Cl MU EL,EIS SFoANEANPOPCPLEC yNIONyJE ¢ SZ 4NASHI o
INSEW +AKT, AIKT sAM1 +AMCL,ED1,POMUL, PD26,K1s K2y K3, WH2,ED2+ED?
0Ovh COMMUN 7AREAY/ KSbL.xELC.!RCH-XNET.XENC|XIOH'XTOL.KELC
oneT COMMDN /ARFAL/ CONST,DEL2, ELT.IE, D12, DI2, DI3 .DELY
000A COMHIN A5/ &G{557, EOE(551s EADLS5) -
oong COMKON 7ML/ ESELSC) 5 NUP ¢NDNRsNDN, WSE(ST)
0010 REAL MUD, NION.ND
€ _STATEMENT FUNCTION FOR EVALUATING naxsELLrau AND RELAYED FCNS
ocll FMITE,FNEHYmEXP{~E*AIKT I %SORT(E F SFNEH
0012 NDATA _THS,NT,DTOT.ETOTyNINyNIZINT nssr;o.o.l.o.u.o.o.o,o 0/ o
o0L3 NATA WSVLE CNSIZ+CNSSsGNESCNAS CNMET jCN Vﬁ?ﬁ?ﬁ?ﬁ?ﬁiﬁ‘ﬁ7“
ACl&é  _____ DATA CNE/ 55%0.C/, CEllllio.DIL_CNREZII!'O.O!.YNE!55*0-1-8“2(550*0
Te0/ +DSAVS/0.0/
o015 DATIA _NEZ/ 550°Ce /yNE/55%0e/,EL/1190, /,NREL/11%0,7 EE/5520,0/
00is READTS, L1 NTAPE
6017 READ{5,151} Kly K2+ NTC, NTPNTW,NPM, KELC ,JF, THM,NC!UM, NDPN,NTHP
Xy WC 5 JUSN, NUST, NBF
0038 PEADI5 1321 EDL oND o+ EOy ELS, DyANSH, FOPO, SR _
0019 FELTIS,153) FID
0020 1 _FORMAY [ 110} . e e
002l i5Y FORMAT( 141G} —
0022 152 FORMAT{ BF1O.4}
0023 153 FORKAT( 3510.31
0024 AKT=G; 0 _ e e
0025 A{KT= 1.o/nnr
0926 _Piw3,161593 o
0027 EMASS 121, 60203641679, 108
0a28 Keg|¥R2
002% WNZs L0/ K2
003y £JDm0, 0
0031 EixZhohb
0032 EISm2leb,
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FORTRAN IV G LFVEL 19 MALM DATE v 72125 01/22/29
DI R I C132.7°0,010549/4,903871 e e
J034 ETV= saanz.u-l.sozoaie,wsn«1.o:ooe . ’
0035 . VTEw |, 0/{ETV#ETY)
R0 T CALL UNDERZ(YOFFY)
o437 PUEHaPRPUe26,0
3038 MUO=l 1 NE-CO)/ETY
0039 . . CMU0=1,0E=09 .
o0 cnuPDP:CHUd'ODP“
oLyl IF (POPCWGToL0aGCL CHUPDPaHMIJQ%10,Q
Q42 pnﬂuo-cuupoplerv
ST CLOSS=","
Inbd NUP=)
Nuas, . e TN
0046 NUNP en
00%7 INCI=D
Cr4f NKR=?
Craes ' MAS=D
ouso NES=9
T4 HOE=D L et —— e
0052 NOTN=O
0052 NL7N=" .
IS NIN=O
nQgss Lk=20
Q356 IN[V=999999
Dus? NMET=Q —
Q058 NEXC=0)
0589 - ETaS=n, 0
. 0060 ETEP=Q.0
0061 .. . _ _NTPSwxD .
ore2 NWwD
_R0&3 =
Goas DYAYS=2, 7
OnesS. _ _ CSF2=0.0 e e —————
0066 CNIQZ=0.0
PRIy 4 CSFla0.0_ _ cm e m m ——
0068 CETAS=0.0
0059 CETEP=0,0 —_—
0070 NCOL=O
_nom ~MNMET=0.D e
0072 HRNSE=Q,0
On1a GNEXCa0 0 . . . L e —
Q074 WNES=0.0
0075 _ _ KNASsO.
0076 HN1ZIN=0, 0
00171 JEwd — .
0078 {E=JE
_nn79 DEM=3, EGE+LG*PRPQ.
0080 ., DETIZ=D/fJZ
aoni N2Ive 1 0/0FETY
0082 CONSTel, 0/7ALOGI2.0)
_nDnoal : ENZmf, 467813
0084 ED3x19.8

—0pas EMaEN2SAIKT
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FORTRAN IV G LEVEL 10 MAIN DATE = 72129 Gl /28/29
o8 . AM1E2,CrATKT/SQRT{PISAKT) -

0taT ” CALL  RNITRETSRZFEY2TTT —
0048 SOuPOPOs SR 1,084 L6 i} .. S

neee CALTGw  CHUPLDP J{AKT®PI) -

0090 DElmd.ulb .

0¢ol ' Ne2e", 385

CCoz . DEImQ.I o ————

€093 NiY=1,/0.018 T T T T T
LR ] 2=1./DEZ

2095 L13=],/NE3

Joae AMCI® SORT(2,r#2,T1AA%ALKT)ISED?

AT 0O L1 lsb&, 36

DOIR _ __EBL_={l-b)*DE2 ~4.0 e

£egd EMie FHL -, 1688 - T

0100 EADL [)w 2.0%=£RL

o101 Call=11m 2,Q0%uEMY

t19? 11 FOF(LI=ERDILI8({2,0%#DE2 ~1,0}

0103 : JEleJEel

niae DO 12 =17, JEL e

0105 FAL=" 7.005 +{i=316}10E3 : - Tttt
0106 FMY= TRL = C,1405

cicr ERDLLE= 2.0%%ERL

n108 ER{T=11x 2,04eEMY

olce 12 EDE( 1= EADL(IIS{2.0%5E3 ~1,01

0110 . D0 10 =1, 5 . . .

011t FDE(E)= Da016 - - ToTTT o
a2 EGEII= EDELTIO] -C.008

0113 19 FRO(TI= EDeL[}*iI=1}

Cllg , COE(30}729.0%

011s EG(48)= 173T.4B2

orré IF_ INTAPEWLNEL1) G0N __TO_2

ti17 T RERDILSE T EAVGy DAVGs TMEs NTWy NTy NTH; WIONy ODEG: NGHySWFs EoU°
o118 _ _READ(I1U) Z, WT, ANIDS,SF3

[ARL] TONSENSWeK 2 N

ciae . . _REWIND 10 e e e —

oli2l NT=NT+1 Tt .
G122 2 CONTINUE .

0123 IF (NTAPE.NE.2) 60O TG S -
0126 _____READ(9 ) EAVG, DAVGy TME, NTH, NT, NTPy NION, DOEGy MSW.SKFy Fo U
012% READ(9 } Z, WT, ANIOS,SF3

Q126 ... ... _NSENSW®KZ e e

0127 REWIND O T

0128 nishTel

0129 5 LONTINUE

0130 IF _(NTAPE.NE.O} GO__TO 122 . . ‘

0131 NION= SORT(SO%10/AITG! T

0132 ANEAMsNIGN®Q,33333/DEN

0133 CALL  SORCEZ2{NTP, EAVG, NTH, PH, FIDI

gl 34 - AL=ALDALEAVG)

0135 DAVG=AL

0136 : DDEGmDAVGEND/SQRY(EAVG) __ .

0137 SF2=1.0

p3ae IE __{NIONeNE,Q} SF2sNTR/HWION
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FORTRAN fv G LEVEL §8 MAIN . DAYE = F212%5  Olrz8/29
0139 : SN=SOPALEND4SFR/ ETVOSORTIEAVGY )
olan NSHeANSW 0, 5
Olal IF [SHsGT ANSH] NSWnSN #0424 - .
0Yia2 NSBNSwWeRY
0143 SPFENSHISN . e e e som——— . -
01aa SEnSuF
2145 ANIQSSNILN
Clat fALL  SOURCE(MS,NTP) .
0147 . SF1=§F2 e« et mirs o i e ot e -
0146H SF3nmAF2
nyas THE=D.C e e e
0150 122 CONTINUF
o1nl SExSWE .
€ GENERATE SNUKCE PARTICLES TO INITIALIZE THE PROGRAM
0142 ANEAS*AION®0, 3D332/DEN v r—— .
0153 WRAITE LS, TD)
(HY-T 70 LURMAT(* 1, *PROGRAM .NITL&LIHLUDN AMD THF INITUAL PARAMETERSY,//)
ryGA WHITE{ST1) AITGy NIMN, NTP, ALEAVG
alsk 7L FORMAT(S Y SATTG .m0 Eléch, 3K¢'NIQN %' Eléy by 3X, CNTO 24112498,
L'DCENLED]S s*. Flaak 3ke CEAVGE ", Fléydy /)
187 T2 FORMATLY ¢, 8% 'DCOLE o 13X, "DORNS , JANL PENERGY j AN 278 14X PUF, 10X,
XEREIGHY Y, )
cL58 Th FOHMAT(* #  FléndedXy Flashy 3%y FleoSpdKy FLZ206 33X F12.43X4F1304}
0159 WRITE(ALT2)
0160 HiDwRANIZLO)
c1st 1af

C willn THE OUTER | o0QP VHE L TH PARTICLE H]STORY
C GEUMETRIC ROUTINE ENTERING HERE
0162 . L TITTULE LECLL e LEe GaOla ORa AE{ LLaBYARQVL _GR. TN 9008 _ . _
0162 DCEN=DLEGRSQRTIE{LH)
C184 I8 6 L(NIIN GTa 0 Lo ANQ L LaGTa Y21 E  DCEN® O1ZM{NOIN®]]
0165 NFLG=D

s . L MR AUCD Y IUAR L L e e L ——
016y LEG2=0

0le8 PR 2la0 e s o it e e it b e e
G149 IF (E(13aGT4EDLS ETQBI‘-I.O

g 3000 IE LT AL E. 0,008 niLLLi;ﬁi;ﬂlAﬂEaLEiiiLLEaﬂ;ﬂli_*ﬁﬂw_iﬂ.__ﬂﬂﬁ___

Q7L JRINT{ZELi»DIIV) +)

0172 - BI=AANAZIOY | o e e v e e e e
0173 ALD=ALDALETLi
01174 PCAL=ALDEARSIALDGERTINY P _
G175 Ir (NFLG.EQe1) GO TO o209
i HELYEL AR OETARERIIRE T AdR ]
0177 NCOL2=ABS(ALOG{L.,—RI}ICALD
4128 RINY:GINT. ¢ALALeDCAL2 -
9179 ETOTwETDT4ELL}
AnLan LIE{NOPN LT 2) GO _ YO 809
[13Y.34 DCENZ2wDLEN
n1g2 Elugfl)
018%2 UI0= 1 TUSN
L1844 All=?ly .. ...
0183 809 NFLGal

LLB4 00 . [E (QCENLLTANEOLE GO YA, 867
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FORTRAN Iv 6 LEVEL 1B MAIN DATE » 7212% 01/28/29
_o1y7 50) OCENaDCEN« DCOL

CLAB Z{Tr=E(}] +0COLPUlTT i .

o189 . NCOLaNEOL+L )
otoan {F (MODINCOL MG EQaDT Mpni‘ CFHGCE - T v
0191 IF (MOD{NCOLyMC}oNE,C) RIPul O=Kip

0192 CALL COLPRO{I+ DCENe NTH, RTF; HOST: sv&aa. L3009}
o192 G0 T 3 g

0194 902 7i1)a 2111 +BCENsglTY

0195 IF (47011, LELC. 0100128116700 GD T8 9002
0196 JAINTLLTI1&02IVE+L T
a147 IF (J.GTadll Judl

CluHK Ke [NDEXECE(I)) b

o1ye 1F {ReGToJE} ReJE L

o200 T IFTIREGERLTT 6o Th TobvE T T T e e
g2nl ETAG2#1.0 , : o -

azo02 IF LEL{1).GTED1) ETAG2e=1,0

2ol , IF (LETAGIYETAG21.GT40,7) GG TO 94

0204 IF (EFAG2.GT.0.0) GO TGO 902

0205 _ _ ___ NUPaNUP+) e e

02Go ESE(NTPIRE(T) T T
0zar WI{lJewE{1 /K2

0208 WSECNUP =wT (1)

¢200 G0 TO 934 o

o2l 903 IFL{LFGZeEDelieORa INDPNLLTY. 20} MHONRSNONRFL

cz211 —— TF{{LFB2eEQal 1 0Rs INDPNeLT220}  [RA (NONR s

o212 TNGN=NOMA T v
o0zl TF (MODIROM,KILLNE.O) GO TO 9065

0214 WT{Iix®T{]}vKY '

0215 904 NEZIK,diow NEZ(Ksd) ¢ WIEL)} _

D2i6 ERT{K M =EREIR JI+EL T 1RRTELT -
o2ty 665 1F(ILFGIEg.1], nu,(emm.u.zn 60 10 9609

021d LFG2nl e
0219 ECiteELD .

o220 TR SR T

0221 B CHilrezIC e

0222 UCEN=DCF K2 Tt T -
0223 OCOL=nEOL2 R

03¢ GO T 900

0z25 . 80D3 NESuNES+] o

0226 TE IEUINLLTSEDIE WICE ) uwS I i7RS T

0227 . _ WNESeWNES ewTiDF

0225 TES{NESin T

0229 1F {E{11eGYalat)) ETEPaETERSE{II®HY(I])

0Zac 9009 = I+1

Dzt e . BEGEZ=0_ N — .

23z 1E (T.LEATPI G0~ Ta 777 T
0233 . 1F UtIeGTaNTPIaAND.(NIENaGTL0))  NOINm NDIN-1

0234 TTTTIE INOZRLLTL0) HiNal 0 T
0235 !F !lfi!lN:LGT.Oi uANBQ‘NINnEQ.D!! GO T!J 7178
0236 NIZW=WRIZIN +0.5 .
0231 . NuSsWNES #0.%

0738 NASWaMMAS 4048

G232 HNASu=NNASZRELC
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FORTRAN Iy G _LEVEL e e HALN BATE = 12128 L DLrassRe
0250 HNSERWNSE/KELC

0241 NSEWsWANSE ¢0.% )
G242 0D, 191 sl J€ et e ———— e = e e
G243 DO 151 MalyJd2

02 ke EE(M)mEE(H) + ERI(M.N) __ . e e e
D245 131 NE{MIs NEIM) « NEZ{M N} ¢

LL1'N JE ({83, 0. 80,08, (NUPLEQ. i) GO TH 24

02e? Nyuk3/ g2

CI4h 15 (NTalTedt M3s} e . e - .-
ULt NXIwK3-1

u25s0 IF (N3, LT J21 [2mhKd “
€251 LF (8302410 M3eNy

Rasd. Ny 23 hel NUP

02sy Ke[NDFXE(ESEIND)

A0 EF(KIB{E(K} ¢ [KI=1}&ESE{NITHIE(N])

2255 HE (K IONE(K) +IRA=] j®dGELND

0246 22 IF (NR2GE.JI} 12wmJl

0257 no 2t Lel, 2

0258, . o S NRELILeNREZ{L) & M3ERSFINL v e s
£2%9 31 FZILI#EZLLY ¢ FSEIN)umISsWSEIN]

(TFE] NEaYRY «J2wHy

0isl 1F (K2, LT¢JIt  1ZaRKY

242 Minf

07e3 IF {(N83.GT.20 50 TO 22

t2as v rmmee 23 CONLINUE e+ e o am— r—————————r—-

D45 2 CUNYINIE

ar Y Mr 192 M=), J7

uze?d DU 1915 Hal,.lE

G2 kd RIFI{FIatAFLIM) ¢ REZIMGMI

9240 191y E2LMIsE2i%) +FRF LIV MY

WETR e LR EONTINUE L L e

- b NTPRANTDeN] IheNE SeNAS

BETR HEPAaY, D

2173 FIUL =}

f2 74 U 1% SsY,JfF

027h FTULe FTQL 08 (M)

M2 e L NIPReNT P $NE(M]

6217 EuTOL=EYOL

0278 NTRTuNTPN

0279 DAVGN: QAYGYNY

n2en DavSs{DAVEI2 100U, ) vONTMP

a28t DHAVE=ITAVSs DAVS

RERD e DG ILRSAYS . L e,

0za3 ANTPI = 1,0/NTPY

0234 NSTPw HETP ¢ MTPW (.5

02838 DTAVSsDTAVS +0DAVS

028s NTPS2NTPSe NTPN*DAYS

02RT NTPOeNTP

283 EWAVL=ESTOL¥ANTPO. - .

0289 NSD=NS

pzat NEWOSNSOYWHZ +0,%

0291 NTPeNTP4NIIN

02492 NTPPshT®
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FORTRAN I¥'G LEVEL 18  WAIN _DATE = 72129 01720739
0293 DAVG=DTOT®0,9/NTP

949% ~ EAVGE ETOV/NTP

0295  DEGeDOFG/ETV . — _ .

n286 i TME=TME4DEG - -
6297 THS=THS+DEG :

C IF SUURCE PARTICLES SO(NSIC NES YHEN ELININATE A3 MANY RESTOUE PI&TICLES AT TH

t29¢ MIPSsNTPW ¢ NWS +NASW

0295 DCENL~» ALDA[ EAVGS a— e
croc NTweNTHN 445 . .

0311 DDEGEDAVGEND/SQRT( EAVG) | )

0502 SF2wl.0

2303 IF (ANINSJNE.D) SF2eNTPS/ANIOS

03104 ESAVG=0,0 e -

0305 IF(WNES.hE.D.0) ESAVGS ETES7WNES T TmTETT s
tane EASAVGaD. L ,

ant \ IF (WNAS.NE.U1 .EASAVGRETAS/WNAS

7108 SHFNsSwF :

*aza RE=],0 )

0o o CIF L LwNES4WNAS)JGT,0e0) BFuiWNIZN®SN]/ {WNESIWNAS) )
N3l CNSS#C NG S+  SNIDAVYS i
0212 CSF2m CSF2 +(ETEP+ETAS+40,#WNIZN}/TMS

0313 IF{IMODINT 1510 EQeC ) ANDo INT NESG)} GFINCSF2 /(SO ELRS, §
6314 CSFl= CSFLl + SF24DAVS

015 IF CI#IDINT,5)aE0.0)AND, INT.NEoC )} “SEV=CSFLENISG

nite L IF LUACDENT +5)aF040) o ANDy (NTaMEs 200 ANDy (SF3.LTo5F1€2.011) SF3w

T RSORT{SFL*SFE3}

na7 wGHT=SF1/5F2

238 SN=SJ*NDEGHSFISHEHT/ETV

3Ty NSwaANSW¢0. 5

1320 IF {SN,GT,ANSW] *SWeSN #3,5%

oy L SHEaNSW/SY L R

0327 THSaNSNeK? - T

r322 SFESwWF

0324 KMEW=WNMET 0,5

n378 NEXWEWNEXC +0.5

3326 WSVLE=w5SVLE+ WVALUE#NAVS

0327 e CETEP«CEYER ¢ FYEPSDAVS . _ . . .. .

0328 TETASSCETAS +ETAS*DAVS T
0329 CNSIZ»CNATLeWNIZNDAYS

033¢ CNESaCNFS+WNES#DAYS

£33l CNASHC A5+ WNASEDAVS

0332 CNMET sCNME T4 WNMET#0AVS

2333 . : CNEXC=CNEXC¢WNEXC*DAVS e

033% CESAVG=CESAVGH ESAVG®DAVS T
0335 CeASGICRASGAELSAVGSDAVS

02336 CLOSS= CLOSS#+(WNIIN=WNES)#DAVS/ (TMS®SFIFNGHT}

0337 WVLEF 1 swSVLE#DL56

0338 ALUSS»CLOSS*DI5G

0339 ANSVG=CNSS*DISG

0340 ANTZVG#CNS S 290156 .
Q34l _ . AETEPsCETEP/NYAVS . .

0342 AETAS=CETAS/DTAVS

0343 — 1F LANIJVG(NE.C) WVLE2=({EGPANSVG=AETEP~AETAS) /ANTZVG.
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FORTRAN (IV.G LEVEL 18 . .. . __..__MAIN DATE = 72128 _ . _0l/28/29
0344 ANESCNES/DTAVS

0345 ANASSCNAS/DTiVS

D3&h AESAVGSCESAVG®DISG | L

0347 AEASGSCEASGDING . .
0348 .. ANMEYSCNMET®DRIAG _ .. _. . _ ... e e e

0349 ANEXCCNEXCYDISG .

Q380 =ANES+ ANAS -ANJIVG

351 "IF [ANSJLEWOsO} ANS®=NSW/SHF

0252 . JE [AN[7VGeNEgQuG)  WVALUE= {SN®EC- AFTEP=AETAS)/ANIZVG

0353 IF [WNIZNsNEeQel WYCHLANS®EQ ~ETEP=ETASIZHNIIN

0354 IF {NS.GEs1) TMS=Q,0 e —

03585 NET=NES+NAS

PELT M- (NSNTP) - _
357 IF (NET.GTeD) CALL FILHOLINTP,N%S, NASI

2358 G0 NIINT= NIINT ¢NIIW _

0259 1F (NUF +GT.0) CALL SEPROCINTP, K3)

036l ' IF (NONR,GT.Q )  CALL RRFROCINIPaK2}

hETYS NAST= NAST +NW$ .

L L _INVRODUCE THE SCURCE PARYICLES FQOR THE NEXY CYELE .
¢ EVERY FIFTH CYCLE RENORMALIZE NTON AMD NUTPUT QUANTITIES ARE PRINTED
£ RENUKMALIZATICN PROCESS OF MIDN _ o

1162 ANSTP= 1,0/NSTP

0353 ANTPSaD5AYS/NTPS

VEED) NSTANZNS TP

f1p3. . _ — DD 16 _ _MaleJZi_ . _. . . e o - i m o i e
036 CNREZ(M)= CNREZ(™) + NREZ(M}®DAVS

Q367 16 CEL{MYz CEX(M) + EZ(M}®DAVS

0344 00 18 Hal,J2

023e9 ENHEZ(M)aNREZ{N) =ANTFD

r37e 18 EZtM}= FIIM)/ MREZ(M}

0371 e —SUHNE=G,Q Cme e e e e o e I

7372 D0 193 Mal,JE

0373 SUMNE= SUMNE + NE(M)

0174 TNE{MIx TNF(M] + NE(MIZFSDEIM]

9375 193 FNELMIwNE(M)*ANTPO/EDE (M)

0374 FAVied,

C3TY o DO 1TSS M1, LB e —n . -

0378 EAV3= EGIMISENE(MISEDE({Y) +EAV3

0379 1755 CNELYl= TNE(M)®ANSTP

0agn Col O4CHUPNBE2 . AIKT/SORT(AKT®P T}

038l ANION=0. 0

0382 ANIOZ=%. 0

Q383 DO 20 Mm)eJdt . T,

0384 ANIOZn ANIOZ & FML(EG(MIoCNE(M) VSEDEAMY

D3R5 . ANION= ANION + FMI(EG(MY FNEIM} I®EDE{M)

0386 20 CONTINUEC

32381 DNION=ANICA*INTUN

02188 DHID2=ANTI2*CNION

Bi[9 LJID=ALGES. . _ .. e eee.

0230 IF (ALCSS.LTede0} CJORG,0

039L... . IF (ABS(CJUIG6Ta110s250) CJDmllOat50

0392 THION=ARS [SO+CIN}/DNION

0393

o -INID2+=ABS{SO+CJD}/DNIC2
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FORTRAN IV G LEVEL 18 MAIN DATE = 72128 01/28/2%
0394 THIO2sS5QRT(TNID2} .
“039% ' TNTON=SGRT{TNIONT
£196 CNIO2«CNIN2 ¢ TNID2ORAVS
0397 AN[US'CNIOZ‘DISG *
ETT ] _ WFal.0 e .
3299 [F (ANES#ANASJNELD4O) WEwIANTZWGHANSVG ) F{ANESCANAS)
0400 ___ IF_ (MODINT,NPM}.NE.O) GO YO 1790 e
A NION=ANIOS T
0402 IF ({WFaBT 04005 o AND iWFsLYs 200017 KIONSANIOS®WFEUURF
0403 1796 CONTINUE
2404 DAVT =DAVG®ND
veys ALPHASANTZN/ {INTPH=DAVT)
0&%6 ANEAMaNILCN®O, 33333/DEN
veot’ 1785 FORMAT(POT, 'ANXUN-'g—li.Q-3X'iEﬁ Oin T E 3, 6, 3K, INTONSYETY 300,
"ALPHA"’F12q57‘1,'1.5‘“"151_3;_._'/.' .
[ s} ! WRITE(&,1785) ANIONy DNYO2, TNID2, ALPHA, ALOSS
0409 WHITE(As+171) EU, POPO, Dy DETL, DEG+ NDPN
n&1e 171 FORMAT(®1® ¢ GAST HE®,2X,*SOURCE ENERGY:?,F5,0,3X, 'PRESSURES Y, Fé, 0,
I LIp?R'.BK.’SLIB THICKNESSI? 1Foeds? CMIy ¢ DXI9,Fhely? CHILOX, 105LT
R EE2. 5, AN Y WPROL® 412,47 )
T411 WRITVELG,1HGY NT, TMEs NSy NSW
O&l2 140 FORMAT(® ¢, sNUMBER OF TIME CYCLESs Y, Th 33X 'TINE aV, FI1D, 5,9 SECY,
1%Xs YGENEFATED SOUACE PARY wiéy [%,3Xy "WGYED & NF SOURCE PART,=t,
115 )
0413 . WRITE(6, 1905} UAVT, DCENYsEAVG,EWAVGs EAV3
6l6 "ITHISTEORMATEY T tOAVG w¢,FiR,5¢5Ks 'O EN =0 o F13, 8, 2%, POVERALL KivGar,
' IF1l0¢5y3Ke* WOTED EAVGH! (FlOuS5,3X, 'EAVEC (HECKs! ,F10:5,/}
"415 WRIYE(A,181)
DSV 141 FORMAT{Y %, 1X,'NUMBER DISTRIBUTION® 42X: 5LUX DENSTTY? 46Xy *AVERAGE
e ENERGY Y 23X tCUUMULATED o DlS!R'.!ﬁ.'EN‘RhY INTERVAL! 42X 'CUM FLUX
o !DEN‘.GK.'UBEN~DEV!3YXUN'QID e e -
0ul? CESUMaY, 0
Q&) D0l 231 M=), JE
Nels CRSUMECCESUM ¢ CNE(MIQMEDE(M)
Q420 TF INE{%)1ahGT.0) DEAVGREGIHI=EE{MI/NE(M)
r4ezl [P [NEIM),LE«N) DEAVGwD,0
0422 I (NEIMI.ENeO) DONAVG=OQy .
0423 FNOY=CNE (M) = FNE(Hl
0424 VFE=SORT{EGIME) *ETV
0&25 FLXL=#NE{M}RVFE
0426 _ FLX2sCRF(M)*VFE o
cee? IF {NE(M)«EQaT) GO YO 281
0428 o IF{(MyEQu]1)aAND, (BEAVE.GT00:0) boORs ((MaEQe JEI 4 AND,{DEAVG,LT.040))
X} DNAVBI-DEAVG‘FNE("I‘On5/EOE(H|
0429 IF ({DEAVGeLTe0e0)e ANDo{IN+]1)eLEySED) ﬂNlVG--DEAVG*lFNFlH#!I-FNE(“
X1/ {EGIMeL )=EGINY)
043 iF l[ﬂEA{G eBTelu b ANDL(MeGTo 1 } DH&VG?QEle‘IFNEIMlnFNElH-lIll(EGt
XM)~EGIM=1]1}
0431 __ 281 WEITE{6.1A2) ¥yENE (M) FLX1LEG(MICNE (M EDE(NILFLY2 o DNAYG
Q432 182 FOFMATIY Y3l 34E12.5¢5K,E1204%s 5Ky Fl2abpBX, ElZoS.bx. Flz.e.‘XgElZ‘
. o L Xe 54Ky E1244) . e e e e mmemm i
0433 DET«DDEG/ETY

0434

_. WRITE[&,183) NTPP, NSTPN,NTPW_,DET, DAVGO, NCOL
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FORTRAN LV G _LEMEL. Y& . e MALlN DATE = 12}31_ . L D1728729
Q435 1n3 FORMATL® 4111.3XI‘TDTAL " UF PA!TICLES PROCESSED 0'.!5-5!.'CUHULAT
1ED # OF PARTICLES ='.Il°;3l.'HGTEO TDTL 8 OF PARYICLESw " ,F12,3,//y
. A I;I?:.'ET?;;flhhm_Dm_mmﬁz!_;ﬂzLimh'G OF . COLLLLIANG=" 2 13,477}
0436 WR 11
C431 187 FURMAT{ ¢ e1Bs 'LONE NUMBER® o SXs YAVERAGE ENERGY',3X,*NUMRER O
1F ELECTRONSY 43X *CUMULATIVE B DENtlI'u!Xu'CUHU. AVG BNERGYY ,IX,
1CZOME o DERSITY 2 2) .
0438 0N 282 Mal,y 42
04309 - ~ANl:£ﬂRE££Hl!AN5TP*DJSG S
G4nt BCIaCEYIMI/CNREZ (M}
044l 2682 WRITESL6y lﬂﬁl Me EZUM)y NREZLM) o, ANLy PLL FNREZ(M) _
Coab? 1a& FORMAT[Y v, 5%, I8, 5Ky Flaab+BX,Flbeby 5%, Flé,5, TN Fldeb,TX,
e LE12.54
il WRETE(G6,185) NION WNIIN NIIN, AMIZVG.WNES, NES+ANES, WNAS,NAS,
- XANASy _MTPs Kl K39 WFReRE _ _____ . .
Gahl 185 FORKATItD¢, 'NUMAER OF POSITIVE iGN-ﬂ;Elhﬁ F/¢' NUMBER OF [ONTZAT
LIONS QCCURED®" 4F9, 395Xy ' ACTURL. w15, 3%, "CUMUL AT IVE AVGE? F14,3,
' X¢Z4' 4 DF ESCAPEDN PARTICLES®® yFG43 45Xy "ACTUAL®mY 15,35, TCUMULATIVE
X AV(m! 4FOs2,//,% 4 OF ARSORAPED PARYICRt K12, %3y "ACTUAL Bx®,15,3%
Xy VCUPULATIVE AVGs'4F9,2¢//y ¢ TOTAL ¥ OF BARTICLFS IN THF NEW cvu.
KL "l y /00t KoV e]2,y 3XetKEu!, 12, LX ¢t BALANCE FACTOR WwF=t,
AFLtre SeAXy 'RFZaYy FLlUWS5+/)
v44s wEITE(6:188) EDly NPMy; NDg XELC '
Vb4t 188 FORMATLY ENERGY DIVIDING LIN: FOR RR PLAY Ew"yF1N. 614X, tEVERYE, |2
- Lot TH CYCLE CHANGE Netof7.' TIME INTERVAL MULTIPLY_FACTOR=® Qa4
XXy YSLASTIC XSEC /7 8YY.[2./1%
0447 NOR=REON=NDN/K3
Coef WRITELH,1H6) NSOe MNSWy ANSVG JNDR JWNSE  WNHET  ANMET ¢ WNEXE ¢ ANEXC o NUP
: XAGAT
Neant 156 FORMATEY o, ' SCYURCE PARTICLES GEMERATED OLD =9%,71%,/7,
e e LA SIUERCE PARTICLES {WEJGHTED) IN THE NEW CYCLE ®%,11Qe3Xe fCUMULAT
XKIVE AVGT ', FL0,3,//
Le' 4 UF PARTICLES KILLED UFF IN RR PROCA*,I10+//
1 & UF SUPER ELASTIC CNLLISIUNSt RI1G. 4. /17,
1 ¢ W NF EXCITAYIONS TI MFTA STARLE LEVELe?
KeFldeu, 34Xy 'CUMIJLATIVE AVGw'y F8s 3y
.. ) coms A2t B OF EXCLITATIONS Tt OYMER LEVELSut E1Jady.
X4Xy "CUMULATIVE AVOu® ,FQ,29//4% & OF PARTICLES CROSS OVER TO HIGR
XENERGY REGIUN NUP=®  I15,4X. *OVERALL WYw ' o E12,4071)
D45l WRITE{G19%F EFe EDP, PDPO 4 SEL, SF2y SF3
0451 135 FUORMAT (' E-FIELD='y FOa2u VF/CMYLy X9 E/Put  F9, 294X P/PO =1 ,FT,1,
X2Xy PSRty H1244 WM, YSF2wt,FEL12,443Xy 1S5F3u0, El2.44/)
L4652 WE :;-’i Eal70} SOARMC:SHED I AVALUE WYLE)L . WWLE2.ESAVG. ARSAYG,EASAYR,
XAEASG
0453 170 FURMAT(' SOVURCE RATE =VyElla3v? PER SEC¢o#No"W=VALUE(LOCAL Juv,
KF10e3y AX"HOURCE REDSFACTEY,FLlady//" HeVALUEWY,
AF1Ce3yaX¢'CUM AVG WYLSY,F43,3X2CUM AVG WYZu'(FQ,a3,
1 /7' AVERAGE ENERGY QF ESCAPED PARTICLESH® JF12,%,3%, *CUMIJLAT
XIVE AViiztoFllaf,Zdy ! AVERBGE ENERGY OF A4SORPEN PARTICLES®S sE12,5,
X3y CUMULATIVE AVGuY yFllede/ | .
0454, - . CKRFNEsSUMNE®ANTPC
0455 WRITE(E1GICKFNE, CESUN’ TMION. TNIOZ
0436 .. 189 FOHMAT{* '¢'THE SN # CHECK n¢,F12a4,IXe?THE CN # CHEGK®Y,F12,6,7/,
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18 ... . BN _DATE w M2 d1/am/e

- b — e =

1 CALCULAYED He USE F"c'!ﬁl‘!‘al'ClLCi Ne USE CN -'ollﬁcﬁqilc AR

XTIF Clemi Elaebe//H

a5Q7

0457 3 o dF:_ §UMODINT ;8 1aNE«D)oORy (NODINT,)0).8Q,30) GO TO

0458 VUWRITE(ST EAVG, DAVG, “HNE 'ﬁf“'ﬁf! ¥y WItn.o0EC, MSu.qu. €y U
. 0458 C WRITEI9) 24 WT 'ANIQ§Q_§QSW__HNW__ e i i
0460 ENDFILE 9 ) -
0461 REWIMD 9

L IYY] 3 CONTINUE *

0463 __IF  (MOD{NT,10)¢NE.O} GO _TO_4

04,64 WRITELIC) EAVGs ODAVG, TWE,  NfWs; Wi, NTH, NION, DDEG, NSW,SWE, E, U
0465 . _WRITE(10) 24 WY ,ANIOSy SFY_ —

06 b6 ENDFILE 10 )
0467 FEWEND 3C o

TR} % CONTINUE - T T
G465 . IF {MOD{NT4NCUM)4NEO} GO TO _44b6__

€410 NSTP=D

061 NTPS 89

A4LT2 ' D5AVSal,

4T3 NASTsQ . . . . N

0474 NI?NTuc ————
n&15 ILE €l i i

04 T¢ .,Laa'S_I(J.O

477 _CSF1md." )

047R CNIOZsU. O

0&79 o __ENSl2sD.O

caan ChNGSr,~

044l CNMET&0,0Q

04u2 CNEXCRE

J4B (ES4VGEN,D . .

QhHa CEASGR=N.O ) B

Q65 _.DO_ 54 M=}, e

04 Ak TTCNREZ (M) 20,0 ’

04HT 54 CEZ(M}ur,"

4Rl DU 55 Mwl,JE

048G TNE(M) =0,

2£9¢ 55 CNE(M) ="

pea) . . IF _UMUDINT,100aNEeO) GO _ YN 86066

0492 "LTAVS=0.0

0493 CETEP=(.0

0494 CETAS=0.0

0495 CNES2D, 0

0496 CNAS=3, 0 i

0491 _ . tbob CONTINUE e

G498 NY= NT +71

0499 DO 56 M=1,500

0500 DI ZN(N}=C. P

nso1 JRRIM)=n

0502 1ES{MIund

503 56_LASL4)=0 .

0504 00 51 N=1,50

0505 - _WSE{N}ar,?

0508 ST CSE(NI=C.O

A )
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FQRTRAN [V. G 7BL 18 . .. .. .. .._... MAIN PATE « T212% |
g REINITIALITE VHE OUTAUT QUANTITINS .

L1:T] G0 82 Mol, JE .

2%09 —{ A1 L] 1Y - - m— —

0410 . 82 NE(M)e 0,0

e511 ORI [+ . k. 0 . L} €7 P & e e tv——

0s12 : NREL{M}= 0.0 :

0513 Ei{MiaDe 0

0514 DO 53 Nal,JE

0%51% e .- EMZiWaMieGed . .. —

n5le 55 NEL(MyMian,0

0517 R NilN=0 e et e = et — e —

051A NOZN=0

péie NN=D

0520 NES=0Q

LT3 I ] 1 © ee e e o —— ———

0822 NCUOL =0 ;

0523 .. ..NASsQ . ‘ . ———

524 . DTINT=),.0

0825, _ NMET =y

052e NEXG w0

chgl - whASeN, 0 e e

3523 WNSFul, O

062Y C MNESad.N .

G530 WNLZHw0a O

053, ... .% =

r5ap WMERCE™ .0

U333 ETASwO, 0 -

534 FTIEPaC, "

-y ETUTs", 0 . o

153 HUP=g .

SBAY e HINEL L Ll e e

%538 NUNR S0

0519 INTYSINTV+ 1100

YA CALL  ANTINZCINIVY

LTS WRITCi®, 72t

Q%42 IF {NT.LE.®TCY GO TO 7717

DEG3 L . —_9%99_Sine.__ . . e e e e mmn —

D56k DEBUG  SUBCHK

€545 £ND
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Computer Science Department. He has been a research assis-
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